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ABSTRACT 

 

In this dissertation, guided surface acoustic wave sensors were investigated 

theoretically and experimentally in detail for immunosensing applications. Shear 

horizontal polarized guided surface acoustic wave propagation for mass loading sensing 

applications was modeled using analytical modeling and characterized by perturbation 

analysis. The model verification was performed experimentally and a surface acoustic 

wave immunosensor case study was presented. The results of the immunosensing were 

also investigated using the perturbation analysis.  

Guided surface acoustic wave propagation problem was investigated in detail for 

gravimetric (or mass loading) guided wave sensors, more specifically for immunosensors. 

The analytical model was developed for multilayer systems taking viscoelasticity into 

account. The closed form algebraic solutions were obtained by applying appropriate 

boundary conditions. A numerical approach was used to solve dispersion equation. 

Detailed parametric investigation of dispersion curves was conducted using typical 

substrate materials and guiding layers. Substrate types of ST-cut quartz, 41° YX lithium 

Niobate and 36° YX lithium tantalate with guiding layers of silicon dioxide, metals 

(chromium and gold), and polymers (Parylene-C and SU-8) were investigated. The 

effects of frequency and degree of viscoelasticity were also studied. The results showed 

that frequency only has effect on thickness with same shaped dispersion curves. 

Dispersion curves were found to be unaffected by the degree of viscoelasticity. It was 
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also observed that when there was a large shear velocity difference between substrate and 

guiding layer, a transition region with a gradual decrease in phase velocity was obtained. 

However, when shear velocities were close, a smooth transition was observed. 

Furthermore, it was observed that, large density differences between substrate and 

guiding layer resulted in sharp and with nearly constant slope transition. Smooth 

transition was observed for the cases of minimal density differences. Experimental 

verification of the model was done using multi-layer photoresists. It was shown that with 

modifications, the model was able to represent the cases studied. 

Perturbation equations were developed with first order approximations by relating 

the slope of the dispersion curves with sensitivity. The equations were used to investigate 

the sensitivity for material selection (substrate, guiding layer, and mass perturbing layer) 

and degree of viscoelasticity. The investigations showed that the sensitivity was increased 

by using guiding layers with lower shear velocities and densities. Among the guiding 

layers investigated, Parylene C showed the highest sensitivity followed by gold and 

chrome. The perturbation investigations were also extended to viscoelasticity and to 

protein layers for immunosensing applications. It was observed that, viscous behavior 

resulted in slightly higher sensitivity; and sensitivity to protein layers was very close to 

sensitivity for polymers. The optimum case is found to be ST-cut quartz with Parylene-C 

guiding layer for protein layer sensing. 

Finally, an immunosensing case study was presented for selective capture of 

protein B-cell lymphoma 2 (Bcl-2), which is elevated in many cancer types including 

ovarian cancer. The immunosensor was designed, fabricated, and experimentally 

characterized. An application-specific surface functionalization scheme with monoclonal 
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antibodies, ODMS, Protein A/G and Pluronic F127 was developed and applied. 

Characterization was done using the oscillation frequency shift of with sensor used as the 

feedback element of an oscillator circuit. Detection of Bcl-2 with target sensitivity of 0.5 

ng/ml from buffer solutions was presented. A linear relation between frequency shift and 

Bcl-2 concentration was observed. The selectivity was shown with experiments by 

introducing another protein, in addition to Bcl-2, to the buffer. It was seen that similar 

detection performance of Bcl-2 was obtained even with presence of control protein in 

very high concentrations. The results were also analyzed with perturbation equations. 
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CHAPTER 1. INTRODUCTION 

 

Acoustics is a highly interdisciplinary field with a wide variety of applications. 

Many different types of mechanical waves such as sound, stress, and pressure waves with 

wide range of frequency components are investigated under acoustics for potential 

applications ranging from structural vibrations to ultrasound. In the last few decades, 

several new applications of acoustic waves in the ultrasound range have emerged and are 

extensively investigated in fields such as medical imaging, nondestructive testing (NDT) 

and consumer electronics. The advancements in microfabrication techniques have led to 

reliable and low cost mass manufacturing of acoustic devices that enable deployment in 

several configurations. Acoustic devices operating in the ultrasound range are typically 

used as filters, resonators, sensors, and actuators in the aforementioned applications. One 

of the largest markets for acoustics at ultrasound frequencies is anticipated to be the 

telecommunications industry [1]. Especially surface acoustic wave (SAW) devices 

employed as filters or resonators are used in nearly all wireless devices such as tablets, 

cell phones; and also in base stations and RF front ends [1]. The advantages offered by 

SAW devices include their compact size and integrated circuit (IC) compatibility leading 

to their extensive use in communications. Ultrasound waves have also been used in 

medical imaging for decades, which provides non-invasive monitoring and diagnosis 

during pregnancy or for vascular imaging and monitoring. They are also employed in 

nondestructive evaluation (NDE) and testing (NDT) applications to monitor the health of 
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structures and to detect flaws and imperfections in components, welds, and materials. 

More recently, surface acoustic waves have also been employed in sensing applications, 

because of their high sensitivity to mechanical and electrical perturbations on the surface 

[2]. Acoustic sensors are used to measure physical, chemical and biological quantities 

using different modes of acoustic modes in a wide range of designs and sensor types [2]. 

Piezoelectricity has been the main transduction method for almost all ultrasound 

applications. Piezoelectricity is the reciprocal coupling between mechanical and electrical 

domains, which exists in some certain types of anisotropic materials [3]. In piezoelectric 

materials, electrical charges (potential difference) impose mechanical stress (strain) and 

reciprocally, stress induces charge. This reciprocity enables generation and sensing of 

acoustical waves using similar methods and devices. Piezoelectric transduction can be 

employed in several applications with suitable design and material selection.  

The most typical sensor types and related acoustic modes used are: surface 

acoustic wave (SAW) sensors which uses surface acoustic waves, thickness shear-mode 

(TSM) sensor which uses resonant thickness shear modes, shear horizontal acoustic plate 

mode (SH-APM) sensors which uses bulk shear horizontal waves, and flexural plate-

wave (FPW) sensors which employs Lamb waves [2]. Among these, the main focus of 

this study is the guided surface acoustic waves. Surface acoustic waves show good 

sensitivity to surface perturbations, with their energy concentrated at or very close to the 

surface [2]. Surface acoustic wave transduction is mainly performed by interdigital 

transducers (IDTs) patterned on piezoelectric substrates. An IDT is formed by two comb-

shaped electrodes with periodical fingers [2]. By applying a voltage difference to comb 

pair, mechanical strain is generated on the substrate regions in contact with the electrodes 
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as a result of the piezoelectricity effect. As a result, a surface acoustic wave is formed on 

the surface due to the periodic structure of the IDTs. Several sensor applications have 

employed surface acoustic waves with capability to operate as vapor, humidity, 

temperature, mass sensors as well as biosensors [4].  

Biosensing applications aim to detect biological target analytes ranging from 

biomarkers to fungi, bacteria, and viruses and to DNA. A biosensor is a device which 

can detect a target biological analyte. Acoustic biosensors offer the capability of low-

cost, portable, rapid, sensitive, selective, and point-of care detection as a viable 

alternative to other methods [5]. 

SAW biosensors typically utilize shear horizontal polarized waves enabling 

sensing under liquid loading, which is essential for biosensing. SH SAWs propagate on 

the surface of materials with particle displacement and propagation in the plane of the 

surface [6]. Ideally, in SH SAWs, there is no normal to the surface motion on propagation 

plane. Normal-to-surface particle motions results in coupling of SAW waves to 

compressional waves under liquid loading, which renders sensor insensitive to target 

analyte [6]. Nevertheless, SH waves couple to shear vertical and longitudinal waves, 

because of the anisotropic nature of the substrate materials. This phenomenon leads to 

poor sensitivity with energy leaking to other modes. There are several methods to reduce 

energy leakage and to increase the sensitivity of the SH SAW sensors by confining 

energy to the surface. Two main approaches are use of surface transverse waves (STWs, 

which use metal gratings) and Love waves [6]. Love waves are obtained with guiding 

layer on SH SAW propagating surfaces. The thin guiding layers acting as a 

shielding/protection layer ensures energy confinement. Love wave devices have gathered 



www.manaraa.com

4 

 

a lot of interest in the last few decades, after they were presented by Du and Harding [7]. 

Nonetheless, there is still lack of understanding on optimization and operation of the 

devices, to author’s knowledge.  

Biosensors are used in a broad range of applications: clinical diagnosis, 

biomedicine, food production and analysis, microbiology, pharmaceutical and drug 

analysis, pollution control and monitoring, for military and security applications [1]. 

Biosensors that utilize antibody–antigen interactions are called immunosensors. They are 

based on the same principles as conventional immunoassays, such as enzyme linked 

immunosorbent assay (ELISA). Acoustic immunosensors utilize antibody-antigen 

interactions for biosensing. They are typically utilized as delay line devices or resonators, 

along with several different types of electrical peripheries. Insertion loss, phase shift, 

oscillation frequency, quality factor and impedance data can be used to quantify sensing 

in acoustic immunosensors [2]. In addition to guiding layers used on SH SAW 

propagating surface for enhanced sensitivity (Love waves), SAW immunosensors usually 

employ additional layers or films. The layers are required to activate the surface for 

interaction with organic domain, to properly orient and immobilize antibodies, and to 

prevent non-specific binding [8]. These requirements further complicate the design, 

material selection, and operation, while ensuring sufficient sensitivity. The sensor 

operation also necessitates selection, implementation and optimization of electrical 

periphery in accordance with immunosensing. 

SAW immunosensors requires incorporation of knowledge on several different 

fields, as described before. Understanding on the physics of acoustic wave propagation in 

anisotropic media is essential for the mechanism. Material selection for substrate, 
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fabrication, guiding layers, electrical interconnects are important to ensure high yield and 

reliable device throughput and operation. Proper activation of surface, and selection and 

application of bio-layers for selective and sensitive immunosensing requires extensive 

investigations on chemistry and biology. The sensor operation also necessitates selection, 

implementation and optimization of electrical periphery in accordance with 

immunosensing and all the materials involved. Considering all these aspects, 

optimization in the system level along with in each specific task is essential and usually 

involves several trade-offs and decision making. In this dissertation, the efforts on all 

these aspects of biosensors have been presented for a better understanding of SAW 

immunosensor design and operation. 

The contents of this dissertation consist of both theoretical and experimental work 

of guided shear horizontal acoustic wave biosensors. In Chapter 2, a detailed description 

for surface acoustic waves is presented, following this introduction chapter. Surface 

acoustic waves and their types, piezoelectricity, interdigital transducers, an extensive 

literature survey on SAW immunosensors, and overview of the literature is presented.  

The physics of the guided wave propagation problem is then investigated in 

Chapter 3. The problem is formed, starting from equation of wave motion in the substrate 

and in the guiding layers considering viscoelasticity. The system is formed, and solved by 

trial solutions, a frequently employed method in acoustics. Several systems in growing 

complexity are investigated and formulized step by step with inclusion of additional 

layers, which is typical in SAW immunosensors. In addition to presented closed-form 

solutions of three and four layer models, a generic method is also presented to form and 

solve the problem with infinite number of layers. A method for numerical solution of the 
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wave propagation problem is shown. A parametric study is also done and presented, in 

order to investigate the effect of different substrate materials and guiding layers. 

Experiments for dispersion were also done to illustrate the validity of the theory 

presented in this chapter. 

Following Chapter 3, perturbation theory, which is used to obtain approximate 

solutions to complex problems, is introduced in Chapter 4. First order perturbation 

equations for the wave propagation problem are derived for investigating guided wave 

sensor performance and sensitivity. The parametric study given in Chapter 4 is extended 

to perturbation analysis to investigate sensitivity considerations in detail. Sensitivity of 

acoustic waves to several substrate types, guiding layers and mass perturbing layers is 

illustrated by sensitivity figures.  

Chapter 5 contains a case study of SAW immunosensing, which was aimed for 

detection of anti-apoptic protein Bcl-2. The manuscript and figures chapter is author’s 

published work [5, 8], which includes detailed information on ovarian cancer; design, 

fabrication and operation of the sensing system; surface functionalization and 

experimental results. The results obtained, are also investigated using perturbation 

equations in this chapter. 

Finally, general conclusions about SAW immunosensors and suggested work for 

the future are presented in Chapter 6. Unless otherwise stated, the design, fabrication, 

packaging of all the SAW devices used were done, all the codes in the appendix were 

written and all resulting dispersion and sensitivity graphs were obtained; all experiments 

were performed and all measurements were taken by the author. 
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CHAPTER 2. SURFACE ACOUSTIC WAVE BIOSENSORS 

 

Surface acoustic waves are guided-waves that travel on the surface of a material 

with their energy concentrated at the surface [2]. There are several ways to excite and 

utilize surface acoustic waves. Piezoelectricity is the most typically employed mechanism 

for exciting SAWs. Piezoelectric behavior is defined as the coupling of mechanical 

domain (strain) and electrical domain (polarization) in certain type of anisotropic 

materials [9]. The piezoelectric behavior is both direct (strain causes charge or 

polarization) and indirect (polarization causes strain). Piezoelectricity can be used in 

several ways for SAWs: by metal inter digital transducers (IDTs) on piezoelectric 

substrates, piezoelectric IDTs or by bulk transducer-wedge pairs (by conversion of bulk 

waves to SAWs via Snell’s law). Several types of SAWs exist depending on the material, 

cut type and boundary condition [1]. Polarization (longitudinal or shear) is one of the 

major properties of SAWs and other acoustic waves. In longitudinal waves 

(compressional wave, p-wave), the particle motion (or polarization) and the direction of 

wave propagation are parallel. A shear wave (transverse wave, s-wave) has particle 

motion perpendicular to the wave propagating direction. Shear waves can be shear 

horizontal (SH, in-plane polarization parallel to the substrate surface) or shear vertical 

(SV, transverse polarization normal to the surface). Shear and longitudinal modes can be 

highly coupled due to the anisotropic nature of the propagation medium. Such modes are 

called quasi-shear or quasi-longitudinal depending on the dominant mode. The quasi-
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modes are excited when there is low crystal symmetry in the propagating direction [2]. 

SAWs with less coupling to other modes can be either pure with almost negligible 

coupling or pseudo-SAW (or leaky SAW), in which energy is not totally confined on the 

mode of interest, but leaks in other directions and modes. 

Shear horizontal (SH) polarized SAWs are the most frequently used SAW types 

for biosensor, especially for liquid-loaded biosensing applications. In SH-SAWs, the 

particle displacement is in the plane of the surface (unlike normal-to-surface 

displacement of Rayleigh waves). SH-SAWs are minimally attenuated or damped by 

liquid loading. On the other hand, in Rayleigh waves, the particle displacement is directly 

coupled with the liquid on top as compressional waves and highly attenuated by mass 

loading and viscosity of the liquid itself. An illustration of the particle displacements of 

SH and Rayleigh SAWs is given in Figure 1. Rayleigh waves are virtually insensitive to 

mass loading changes in liquid sensing applications compared with SH SAWs, because 

of the coupling [6]. However, almost all SH wave propagation on various substrates 

involves leaky waves, with energy coupling to longitudinal and shear vertical wave 

components when excited. For this reason, the propagation nature of SH waves have been 

investigated for least possible coupling with other modes and special cuts of wafer types 

are selected and used for applications. There are several factors that determine these 

optimal cuts such as, high electromechanical coupling (energy conversion efficiency), 

temperature stability, and attenuation [10].  

In addition to advantages of SH SAW devices, their performance can be enhanced 

by using methods to further concentrate wave energy on the surface. This can be 

achieved either by using guiding layers, named as Love wave devices (Figure 2-a); or by 
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periodic gratings placed normal to propagation direction, named as surface transverse 

wave devices (STWs, Figure 2-b). Both methods help enhancement of sensor 

performance by further confining the energy on the propagation surface, increasing 

sensitivity. 

 

 

(a)                                                       (b) 

Figure 1. Two main types of SAWs. a) Rayleigh SAW, b) SH SAW. 
 

 

(a)      (b) 

Figure 2. Methods for SAW energy confinement on surface. a) Love wave SAW device, 
b) surface transverse wave (STW) SAW device [6]. 
 

2.1. Interdigital Transducers 

 

Interdigital transducers (IDTs) were reported first in 1965 by White and Voltmer 

as a way to utilize SAWs on a piezoelectric substrates [11]. Since then, IDTs were used 

as the most typical way for SAW transduction. An IDT is formed by two comb-like metal 

electrodes whose fingers are located in a periodic pattern, formed on top of a 
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piezoelectric substrate as seen in Figure 3-a. One of the combs is grounded and the other 

one is connected to a radio frequency (RF) supply. When an alternating RF potential 

difference is applied to the pair, the resulting electric field generates strain on the 

substrate as a result of the piezoelectricity effect. The periodic structure of the IDTs gives 

rise to a surface acoustic wave because of the periodic strain field. The propagation 

properties of the surface acoustic wave depend on substrate material, cut, and direction. 

The configuration illustrated in Figure 3-b is the most basic type of IDTs, named as 

bidirectional IDT [10].  

The propagating surface acoustic waves also generate an electric field or charge, 

when encountering an IDT, similarly with the inverse piezoelectric effect.  

IDTs can be designed to utilize SAWs with several different properties resulting 

in different operation characteristics and frequency responses. The two most important 

design parameters are center (or synchronous) frequency and bandwidth, illustrated in 

Figure 4. The synchronous (or operation) frequency of a SAW device constructed by 

IDTs depends on the periodicity of the IDT comb (corresponding to the wavelength λ of 

the SAW) and the SAW velocity (Vo). The synchronous frequency (fo), then can be 

calculated using the formula fo = Vo / λ. The bandwidth is defined as the range of the 

frequencies within 3dB of the amplitude of synchronous frequency. The bandwidth 

of an IDT depends on material selection, the number, and the shape of the fingers. 

Narrower bandwidths can be obtained by increasing the number of finger pairs [2] and 

wider band response can be obtained with decreasing number. Optimization studies 

should be conducted based on the desired operation characteristics. High number of 

finger pairs theoretically narrows the bandwidth, but up to a limit. It has been observed 
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that when finger number exceeds 100 [6], the losses associated with mass loading and 

the scattering from the electrodes increase, decreasing the sensor performance. 

Similarly, lower number of finger pairs can cause reduced performance. Frequency 

response of IDTs are further tunable with a method called apodization, and details can be 

found in reference [12]. 

 

 

(a)     (b) 

Figure 3. Interdigital transducer illustration. a) Typical IDT placement on a piezoelectric 

substrate [6], b) bidirectional single electrode IDT 

 

2.2. Surface Acoustic Waves 

 

2.2.1. Piezoelectricity 

 

Piezoelectricity is defined as the linear coupling mechanism between elastic (or 

mechanical) and electrical domains [9]. It exists in anisotropic materials; with most 

commercially available ones having trigonal and hexagonal crystal structures. The effect 

is two-way (or reciprocal): when an electric field is applied on a piezoelectric material, it 

generates mechanical strain, which is called as the direct piezoelectric effect. The 

λ 
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opposite also holds, when a stress (or strain) applied to a piezoelectric material, it 

generates an electrical field (or charge). Piezoelectricity is caused by the unbalanced 

dipole moments in non-symmetrical anisotropic crystal structure [3]. For example, in a 

trigonal crystal structure, there is no polarization in equilibrium state. Dipole moments 

are balanced by each other. When an external tensile or compressive stress is applied on 

the trigonal crystal, the orientation of the structure does not allow auto-balancing of 

dipole moments [10]. A net positive or negative polarization occurs, causing charge 

generation in the material, which is referred as the piezoelectricity. Reciprocally applied 

charge or dipole moments cause elastic stress (or strain). 

The governing equations of piezoelectricity are the coupled equations in 

mechanical and electrical domain [9]:  

 

T

i ij j ijk jkD E d T= +ε  (1) 

 

E

ij ijk k ijkl klS d E s T= +  (2) 

 

where matrices D is electrical displacement, E is electrical field, ε is dielectric constant, 

dijk and dijk are piezoelectric strain constants, T is stress, S is strain, and s is stiffness. The 

subscripts i,j,k, and l define related tensors. Depending on the crystallographic structure, 

all these matrices have different symmetry lines, which can be found in detail at reference 

[3]. Transformation matrices of these parameters and equations are also available in the 

reference, which is beyond the scope of this dissertation and will not be described in 

detail. 
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Figure 4. SAW synchronous frequency and bandwidth 
 

In materials with weak piezoelectricity, the wave motion can be uncoupled with 

electrical domain, i.e. effect of piezoelectricity can be neglected in wave propagation [9]. 

Anisotropic nature of the piezoelectric materials with different characteristics enable 

propagation of various modes of acoustic waves such as; bulk acoustic waves, Rayleigh 

waves, shear horizontal and shear vertical surface acoustic waves, Lamb waves and 

surface skimming bulk waves; with different designs. The propagating wave type is 

determined by material type, cut, rotation angle of the cut, propagation direction, and 

substrate thickness. Wave types and related parameters will be discussed in detail at the 

next sections. 
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2.2.2. Materials and Crystal Cuts  

 

As discussed in previous section, piezoelectric material type and cut are the major 

parameters that determine wave type and propagation characteristics. Extensive 

information and knowledge is present in the literature on piezoelectric materials and cuts 

in references such as [3, 9, 10, 12]. Material properties, elastic constants and dielectric 

properties of typical piezoelectric materials and cuts can be found in these references. 

In acoustic wave literature, cuts are designated with respect to the normal of the 

material face. The surface of a X-cut material has its surface normal oriented parallel to 

the x-axis of the material crystallographic direction [9]. Similarly, the Y- and Z- cuts 

have their surface normal in Y- and Z-directions. Another important parameter is the 

rotation of the crystal cut. It represents the rotation of the crystal in degrees, around that 

axis. The crystal properties of a piezoelectric substrate are often designated as: ‘degrees 

of rotation’, ‘ cut type’, ‘ wave propagation direction’ and ‘ substrate material’. For 

example: “36° YX LiTaO3” is the 36 degrees rotated (with respect to the 

crystallographic X-axis), Y-cut, X polarized lithium tantalate substrate. In the existing 

literature the word 'propagating' is often confusing because of its different use by 

different authors. As in [9], an "x-propagating wave" corresponds to propagation plane, 

but at some other sources, it is related with propagation direction of the wave. In this 

manuscript, "X-cut, Y- propagating wave" is used as wave motion in the plane, with its 

surface normal in x-direction and the wave is polarized in y-direction. 

The selection of cut and direction is determined by several parameters depending 

on the application. Electromechanical coupling coefficient, temperature stability, 
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propagation characteristics, attenuation, and phase velocity of the propagating wave are 

the major parameters in material and cut selection.  

Electromechanical coupling coefficient (k2), is a measure of efficiency of energy 

conversion between electrical and mechanical domains. High k
2 is preferable for 

wideband devices and when use of multiple propagation modes are desired, and low k2 is 

preferable for narrowband applications [2]. Thermally stable cuts are often preferred in 

sensing applications, to eliminate the need for temperature compensation. Type of 

anisotropy of the cut and the thickness of the material enables propagation of various 

modes such as acoustic plate modes, flexural plate modes, Rayleigh surface waves, 

thickness shear mode, and shear horizontal waves [2]. The degree of leakiness of 

propagating waves is also determined by the cut and direction. Attenuation is especially 

important for devices performance, when low insertion loss is obligatory, such as RF 

filters. Phase velocity is also affected by the cut and direction of same material. Usually 

higher phase velocities are desirable enabling higher frequency devices with same 

dimensions. However, higher frequency means higher wave attenuation [2]. Most of the 

time, it is not possible to have optimal values for all the parameters, so design trade-offs 

should be made to pick the most suitable material and cut for specific application. 

 

2.2.3. Rayleigh Surface Acoustic Waves 

 

Surface acoustic wave theory was first presented by Lord Rayleigh in 1896 [13]. 

The surface acoustic waves presented were elastic waves in the material surface with 

penetration depth being only a couple of wavelengths. The particle motion associated 
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with the wave was a circular motion at the surface in the plane formed by the propagation 

direction and normal to the surface, as presented in Figure 1-a. 

Rayleigh SAWs can be excited with IDTs on some specific cuts of piezoelectric 

materials easily. Popular materials and cuts are ST-Cut Quartz (Vp = 3200 m/s) and 128º 

YX Lithium Niobate (Vp = 4000 m/s) with x-axis propagation for both [2]. 

Electromechanical coupling coefficients of Rayleigh SAWs are smaller compared with 

SH SAWs, but they usually show high energy concentration in the propagating mode. 

They propagate on the free surface without significant leak. High energy concentration 

on the surfaces enables use of them as strain [14], and temperature sensors[15] ensuring 

free surface boundary condition is satisfied. There are also reported mass loading sensor 

applications of Rayleigh SAWs from gas phase as in reference [16]. However, when 

immersed in liquids (i.e. the free surface boundary condition is disturbed), the particle 

motion couples with the surrounding fluid medium. SAWs leak energy into 

compressional waves in liquids. This coupling renders Rayleigh SAWs almost insensitive 

to liquid loading. This condition necessitates use of shear horizontal SAWs for 

immersion or liquid-loaded sensors. 

 

2.2.4. Shear Horizontal SAWs 

 

Several decades after Rayleigh SAWs were discovered and implemented, shear 

horizontal (SH) SAWs were presented in late 60s by Bleustein [17] and Gulyaev [18] 

separately. Similar to Rayleigh SAWs, SH SAWs propagate on the surface of materials 

but with particle displacement being on the plane of surface as presented in Figure 1-b. 
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The particle motion parallel to surface plane enables immersion operation, because SH 

waves do not significantly couple to compressional waves in liquids, unlike Rayleigh 

waves. They usually constitute higher electromechanical coefficients and phase velocities 

than Rayleigh waves. However, their propagation nature is leakier: even in the special 

cuts with least significant attenuation, i.e. the SH waves couple to shear vertical and 

longitudinal modes. When enhanced sensitivity is essential, this leaky nature is usually 

problematic, and requires special treatment to further confine energy in the surface. The 

two main approaches used are: surface transverse waves (STWs) and Love waves, which 

will be discussed next.  

Surface skimming bulk waves (SSBWs) are also shear horizontal polarized waves 

very similar to SH waves, and given a different name, because the leak angle is usually 

higher than SH SAWs. The name is used often in literature; however there is no widely 

accepted criterion whether a wave should be named as SH wave or SSBW.  

SAW biosensing applications became realizable after discovery and use of SH 

SAWs, because of their immersion capability. The nature of biological analytes usually 

requires sensing in liquid, mostly in aqueous environment. The typical materials and cuts 

for SH SAWs and SSBWs are, ST-Cut quartz, 41° YX LiNbO3, (lithium niobate) 64° 

YX LiNbO3, 36° YX LiTaO3 (lithium tantalate), potassium niobate (KNbO3) and 

langasite (pure SH waves) [6]. Material and SAW properties of these cuts of materials 

can be found in detail at references [10, 19]. 
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2.2.4.1. Shear Transverse Waves 

 

Surface transverse wave devices were developed on materials that can support a 

SH SAW or SSBW. Metal gratings, usually fabricated during IDT fabrication, placed 

parallel to IDT fingers causes energy trapping effect by slowing the wave, enhancing its 

surface mass sensitivity [6] (Figure 2-b).  

The SSBWs was firstly presented by in 1977 [20, 21], but high insertion loss 

from radiation into the bulk of the substrate was also reported. The first successful STW 

device was presented by Bagwell and Bray in 1987 [22]. However, no clear optimal 

design parameters have been presented with true understanding of STWs, despite 

numerous studies presented up-to-date [6, 23].  

 

2.2.4.2. Love Waves 

 

Love wave devices, similar to STWs, were developed for confining acoustic 

energy to surface. Love waves or Love wave devices are fabricated by introducing a thin 

guiding layer, usually thin films or polymers, on top of a SH SAW or SSBW propagating 

surface (Figure 2-a). First Love wave device was presented by Du and Harding [7] and 

they were shown to have increased sensitivity. The thin guiding layers, of which bulk 

shear velocity should be less than the substrate [7], acts similar to gratings of STW for 

confining the wave on the surface. The guiding layer can either cover the entire sensor 

surface area including IDTs and delay line; or IDTs only [24]. Several studies presented 

that Love waves increase sensitivity of the mass loading sensors (less with only-IDT 
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coverage) [24]. The guiding layers can be comprised of polymers such as photoresist [25], 

Parylene C [26], Zinc oxide [27, 28] or chemical vapor deposited SiO2 [29]. The guiding 

layer is not only helpful for energy confinement, but further protects IDTs from harsh 

chemicals and other surface treatments that are involved especially in biosensing. The 

degree of wave confinement determines the sensitivity, however it has been presented that 

this effect is valid up to some guiding layer thickness [30]. The effective thickness range 

depends on the operating frequency, substrate type and design. It was shown that below 

this optimum range, energy confinement is not significant; and above this range high 

attenuation is observed, resulting in high insertion loss [30]. Similar to STWs, the physics 

of Love waves investigated extensively [31, 32], however models still fail to show 

optimum solutions and to explain high attenuation for thick guiding layers. 

 

2.3. SAW Biosensors 

 

The first application of SAW devices as mass-sensors was in 1979 by Wohltjen 

and Dessy for gas detection [33-35]. Later, in the 80s, early attempts to transfer the 

simple method of SAW gas sensing to a biosensor were less successful [36-38]. The 

reason was that these devices utilizing Rayleigh waves were unable to operate efficiently 

in contact with liquids. As discussed in previous sections, to avoid the high attenuation 

caused by the liquids, the acoustic waves must be of shear horizontal polarization. The 

first successful approaches of using liquid-loaded SAW devices were not achieved until 

1987 [39, 40]; with shear horizontal polarized waves. Another approach used for facing 

this problem was the use of APM devices (SH-APM and FPW), which have been 
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reported to work efficiently in liquid media [6]. However, their operation frequencies 

are limited and they are very fragile due to the thin membrane utilized in the design. 

Thus, in the last decades, SAW devices have gained extensive attention for biosensing 

applications. Up-to-date, there are numerous SH SAW based biosensors reported for 

detecting proteins, DNA, viruses, bacteria and cells [36]. Along with several different 

substrate and guiding materials, several detection mechanisms have been presented, 

which are summarized in Table 1 for immunosensing. 

 

2.3.1. Measurement Methods and Sensor Configurations 

 

SAW sensors are most typically used in three different electronic configurations: 

oscillator, vector voltmeter and network analyzer; as illustrated in Figure 5 a-c [6, 41]. 

Oscillator or the oscillatory circuit is the most popular and the least expensive method 

utilizing the sensor as the feedback element of an amplifier (Figure 5-a). In this 

configuration, the sensor is used as a filter that determines the oscillation frequency 

through the circuit. The sensing is monitored by the oscillation frequency change, which 

is caused by the change in wave propagation characteristics, specifically wave speed and 

phase. A digital frequency counter or an oscilloscope is used for measurements. It is 

regarded as the simplest method with its inexpensiveness and ease of operation, but the 

only measurable output parameter is the frequency [6]. Signal amplitude and phase 

information are sometimes required for sensing purposes, but they cannot be extracted 

using this method. If the sensor response contains several strong peaks, use of filters in 

the circuit is essential to ensure the oscillation at the desired mode. Simplicity of the 
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system and possibility of miniaturizing the amplifier and frequency counter to an 

integrated system makes it one of the most promising methods for remote settings, even 

with the aforementioned problems.  

Vector voltmeter method utilizes a signal generator and a vector voltmeter in 

addition to the sensor Figure 5-b [6, 41]. In this method, one IDT is fed with a signal at 

the synchronous frequency of the sensor, usually in bursts by the signal generator, 

accompanied with an amplifier. The output is obtained from the other IDT by connecting 

it to a vector voltmeter, by which the phase and signal amplitude is monitored. A data 

acquisition system or an oscilloscope might be substituted for the voltmeter, by which the 

frequency change can also be monitored. One drawback of this method is it usually 

requires further data processing, which makes real time monitoring challenging. The 

sensitivity is also limited by the resolution of the voltmeter. 

 

   

(a)                                              b)                                   (c) 

Figure 5. SAW sensor measurement methods. a) oscillatory circuit, b) vector voltmeter, 
c) network analyzer. 

 

Network analyzer is the third method, which uses the same principle as the 

voltmeter with an integrated plug-and-play device called vector network analyzers as 

illustrated in Figure 5-c [41]. A network analyzer is more expensive (compared with 
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other alternatives) equipment that is capable of measuring one port or two port 

impedance, insertion loss, phase, and several other measurements real time. It enables 

complicated measurements of capacitance, resistance and inductance with a 

programmable interface. The drawback of network analyzers is that they are bulky, 

expensive and fragile. On the other hand, they enable numerous measurements for the 

same system without significant extra effort. They are more frequently used in 

development stages of the sensing systems. 

SAW sensors can also be utilized in different configurations in the device level, 

depending on the application. Delay path configuration consists of two IDTs separated by 

a distance (or delay line), much larger than the SAW wavelength as illustrated previously 

in Figure 3-a. The actual sensing takes place on the delay path with the perturbations 

acting on the propagating wave. Delay line devices suffer from high insertion losses due 

to attenuation, since the acoustic waves have to travel long distances on the sensor 

surface. They enable sample placement far from IDTs. On the other hand, usually a 

sealed chamber is required on the delay path, which causes further attenuation, drift, extra 

noise, and instability [6]. 

Resonator configuration also contains IDTs, with less number of IDT pairs 

compared with delay path configuration. Resonator uses grating or reflectors placed on 

either sides of the IDTs, as seen in Figure 6-a. The wave reflections from the reflectors 

constructively form a signal with more significant or pronounced peaks at the design 

frequency (compared with delay path) [2]. Resonators offer sharper resonances, low 

insertion loss, and more linear phase response. The resonator can be designed as either 

two-port (can be used similar to delay path configuration) or one-port [6]. The 
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perturbations should usually act upon the whole sensor surface including IDTs and the 

reflectors. This necessitates use of protective and shielding layers on top of the surface. 

These layers can be also used for further confining SAW energy to the surface, as Love 

wave devices.  

There are several approaches to eliminate the effect of temperature with most 

typically used method being dual-channel sensor configuration. This method involves use 

of two sensors simultaneously, with one used as the actual sensor, and the other one is 

used as a reference [2]. For example, in a typical dual channel SAW immunosensor, the 

two sensors are prepared exactly the same except one of the sensors, which does not 

contain any antibodies for the target analyte. Two sensors are run with exact same 

periphery and same solution/liquid under same environmental conditions, or in a custom 

differential amplifier design. Reference sensor is perturbed by all the perturbations as the 

actual sensor, but not by target analyte. The drift of the reference sensor is then 

subtracted from the actual sensor response, and thus other effects are eliminated. In the 

case of differential amplifier, only the difference can be monitored. Crosstalk between 

sensors is problematic and there has been discussions on usefulness of the method [6]. It 

should be noted that biosensors are more complex compared with other sensors, thus are 

not easy to operate under exactly the same conditions. Another possible approach is using 

a single sensor firstly for the reference and then for the actual test, and eliminating other 

effects again by subtraction of two results. 
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                        (a)                                                                        (b) 

Figure 6. SAW sensor configurations. (a) a two-port resonator [6], (b) dual line 

configuration.  

 

Antigen and pathogen identification and quantification assays used to mainly rely 

on plating,  culture methods, biochemical testing, microscopy [6]. Over the last 

decades , several new methods including immunological methods, polymerase chain 

reaction (PCR) and biosensors have been developed, which provide better specificity 

and more rapid testing compared to traditional techniques [6, 42]. Immunological 

detection with antibodies (or immunosensors) is the most widely used technique as a 

standard for detection of biomarkers, cells, spores, viruses, DNA hybridization, gene 

mutations and toxins alike [36, 43]. The availability and ease of generation of antibodies, 

together with the emergence of several transduction mechanisms, has made 

immunosensing sensitive, specific, reproducible and reliable [6]. 

SAW immunosensors utilize selective detection of target analytes using antibody-

antigen interactions. Either antigens or antibodies can be immobilized on the acoustic 

device for sensing purposes. The immobilization procedure of these molecules should 

Sensor 

Reference 

Sensor 

RF Amplifier 

RF Amplifier 

Frequency 

Mixer 



www.manaraa.com

25 

 

ensure specificity, sensitivity, and reproducibility. Covalent binding is usually utilized in 

sensing layer formation of SAW immunosensors with retention of biological activity of 

biomolecules after immobilization [6]. Self-assembled monolayers (SAMs) are 

frequently employed, enabling formation of monomolecular layers of biological 

molecules. These monolayers can be formed on a variety of substrates and materials 

with proper surface activation and on top of each other by covalent binding.  

Piezoelectric devices with different wave modes, substrates, cuts and methods as 

discussed in previous sections have widely been employed for immunosensors. SAW 

immunosensors usually utilize SH SAWs either bare or in STWs or Love waves to 

quantify target analytes in liquid solutions (mostly aqueous). Antibodies derived from 

mouse, goat or rabbit are frequently used for specific sensing of target biological 

analytes. Surface activation to achieve bio-molecule immobilization can be utilized by 

several methods. Gold surfaces allow the use of functionalized thiols and SiO2 surfaces 

enable use of various silanes [6]. Immobilization and specificity is ensured after surface 

activation using, protein A, G and A/G avidion-biotin interactions using biotinylated 

antibodies, photo-activated dextrans, lipids, hydrogel layers, and fullrenes [36]. All these 

methods form monolayers of active or passive groups for the subsequent coupling of 

biomolecules onto the transducer surface. As mentioned before immobilization methods 

should usually be optimized specific to application. 

Proper orientation of antibodies in immunosensors is also essential for most 

effective target capture. The antibodies should be immobilized on the sensor surface from 

their constant regions, with active regions free to capture target analyte. Protein A, 

Protein G and Protein A/G can be utilized after surface activation to ensure proper 



www.manaraa.com

26 

 

antibody orientation as presented in several studies [5, 8, 44-48]. Non-specific binding on 

uncovered areas of sensor surface should also be avoided by use of other surface 

treatments such as polymers [5] and hydrogels [36]. 

To date, there are numerous reported immunosensor applications, utilizing several 

designs with different methods, SAW types, configurations, materials and surface 

treatments. SAW Immunosensing applications that were reported up to date are 

summarized in Table 1, under several headings; however details of each work will not be 

discussed one by one. One can refer to excellent review papers for detailed information 

on specific works, such as [6, 36, 41]. In the ‘target analyte’ column  the target species to 

be captured and sensed by the sensor is given; the “coatings” column includes the guiding 

layers and applied surface treatments; the ‘immobilized’ column contains the information 

on what species immobilized on sensor surface to capture the target analyte and the 

‘device type’ column show SAW device type and used substrate material. As seen from 

the table, several different designs have been used with a wide variety of different 

materials, methods, chemicals, for several applications. 

 

Table 1. A summary of immunosensor applications reported in literature. 
 
Detection of Proteins via Direct Immobilization 

Target Analyte Coatings Immobilized Device Type Reference 

IgG - Anti-IgG STW, Quartz 
Baer  et al. 
1992 [49] 

Glucose Oxidase - 
Anti-glucose 
Oxidase 

SH, LiTaO3 
Rapp et al. 
1993[50] 

Glucose Oxidase 
Polyimide (cyano transfer/ 
TRIMID)   

Wessa et al. 
1999[51] 

Anti IgG & Protein 
A 

PMMA + Gold IgG Love ,Quartz 
Gizeli 1992 
[52] 
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Table 1. (Continued) 

IgG 
PMMA & Novalac PR + 
gold 

Protein A Love, Quartz 
Rasmusson 
& Gizeli 
2001 [53] 

PR + gold 
 

Love, LiTaO3 
and Quartz 

Saha et al. 
[54],Gizeli et 
al. 2003[55] 

gold 
 

Quartz, STW 
Leidl et al. 
1997 [56] 

- 
 

SH, LiTaO3 
Hoummady 
1997[57] 

Anti IgG 
SiO2 IgG Love, Quartz 

Harding et al. 
1997 [58] 

PMMA, Cyanethylcellulose IgG Love, LiTaO3 
Josse et al. 
2001 [59] 

Thrombin SiO2 + gold 
Thrombin DNA 
aptemers 

Love, Quartz 
Schlensog 
2004 [60] 

Blood coagulation 
cascade 

SiO2 + gold 
Thrombin DNA 
aptemers 

Love, Quartz 
Gronewold 
2005 [61] 

Thrombin SiO2 + gold Anti-thrombin Love, Quartz 
Perpeet 
2006[62] 

Detection of Proteins via immobilization by Protein A & G, Dextran, Streptavidin-Biotin 

IgG, Anti-human 
Serum Albumin 
(anti-HSA) 

Gold + Protein A Anti-IgG, HSA SH, LiTaO3 
Welsch 1996 
[45] 

IgG Protein A anti-IgG SH, LiTaO3 

Freudenberg 
et al. 1999 
[47], 2001 
[46] 

IgG 
Gold + Alkanethiol 
+Protein A 

Anti-IgG SH, LiTaO3 
Kwon and 
Roh, 2004 
[48] 

Bcl-2 ODMS+Protein A/G Anti-Bcl-2 SH, Quartz 
Onen et al. 
2012 [5] 

Urease 
Polyimide or Parylene C+ 
copolymer 
(carboxymethlyated dextran 
and BSA) 

Anti-Urease SH, LiTaO3 
Wessa et al. 
1998 [63] 

IgG Anti-IgG SH, LiTaO3 
Barie et al. 
1999 [64] 

Ostrogen receptor/ 
Anti-Urease 

Optodextran Estradiol/ Urease SH, LiTaO3 
Lange et al. 
2003 [65] 

Anti-folic Acid Parylene C - Aminodextran Folic Acid SH, LiTaO3 
Lange et al. 
2007 [26] 

Breast cancer 
biomarker, 

Streptavidin-biotin Anti -HMAM 
Love, CMOS 
ZnO 

Tigli 2010 
[66] Mammoglobin 

(hMAM) 
HER-2-neu (breast 
cancer biomarker) 

Parylene C, DC and AB 
PEG 

Anti-HER-2-neu SH, LiTaO3 
Gruhl et al. 
2010 [67] 
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Table 1. (Continued) 

Detection of DNA (hybridization) and Cells 

15-mer  
Oligonucleotide 
(responsible for 
Hunter syndrome) 

Gold + Protein A Anti-IgG SH, LiTaO3 
Welsch 1996 
[45] 

P53 gene fragment 
(exchange or 
deletions for cancer 
related mutations) 

SiO2+gold+dextran+probe 
oligonucleotides 

Probe 
oligonucleotides 

Love, Quartz 
Gronewold, 
2006 [68] 

Cancer cells by 
CD-4 proteins 

SiO2, Gold, 11-
mercaptoundecanoic acid, 
carboxyl activation 

Anti-CD-4 
Love, Quartz, 
Nanopatterning 

Broker et al. 
2012 [69] 

JEG-3 

Lymphoblastic 
leukemia and 
MOLT-17 
(choriocarcinoma) 
Class I Major 
Histocompatibility 
Complex molecule 
HLA-A2 on the 
surface of whole 
cells 

Gold + Protein G Anti HLA-A2 Love, Quartz 
Saitakis et 
al., 2010 [70] 

Receptor-specific 
ligand binding 
(octapamine 
hydroxide) 

- Sf-9 Insect cells SH -  LiTaO3 
Racz et al. 
2011 [71] 

Detection of Bacteria & Virus 

Anti-M13 
bacteriophage 

SiO2 
M13 
Bacteriophage 

Love, Quartz 
Tamarin et 
al. 2003 [72] 

Anti-E-coli and 
Anti-Legionella 

SiO2 
E-coli and 
Legionella 

Love, Quartz 
Howe and 
Harding 2000 
[73] 

E-coli and 
Legionella Analyte 
+ Antibodies 

SiO2 
Anti-species 
Antibody 

Love, Quartz 
Moll et al. 
2007 [74] 

B8 Bacillus 
Thuringiesis 
(Anthracis 
stimulant) 

Polyimide or Polystyrene, 
Protein G 

Anti-B8 Love, LiTaO3 
Branch and 
Brozik 2004 
[75] 

E-coli Gold, PEG Anti-E-Coli Langasite 
Berkenpas, 
2006 [76] 

Coxsackie virus B4 
and Sin Nombre 
virus (SNV) 

NeutrAvidin 

Unlabeled 
antibodies (for 
SNV) or with 
biotinylated Love, LiTaO3 

Bisoffii et al. 
2008 [77] 

Biotin Binding Protein (for 
B4) 

Antibodies (B4) 
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2.3.2. Overview of Existing Literature 

 

The pioneering SAW immunosensing studies, starting from Baer et al. focused on 

proof of concept mainly using IgG antibodies and anti-IgG either as target analyte or 

immobilized biomolecule. Successful applications have led to extensive research in the 

field to detect proteins, biomarkers, bacteria, virus, and DNA mutations. 

• The operation frequency of the immunosensors varies from the low-MHz range 

up to GHz range. In theory, higher frequency leads to higher sensitivity, but there are 

several other parameters and trade-offs should be made for device design. First of all, 

higher frequency devices are costly by means of fabrication and of required electrical 

periphery. Fabrication of high frequency SAW immunosensors require high quality thin 

films, and rather expensive e-beam lithography. Also, high frequency network analyzers, 

power amplifiers, filters, couplers, and vector voltmeters are more expensive than their 

lower frequency counterparts. Another problem is that wave attenuation and related 

insertion loss increases with increasing frequency. It is not very problematic, when the 

sensing surface is in the order of couple wavelengths, however, if the sensing surface is 

relatively long, high insertion losses can be an issue. This not only increases 

amplification requirement but also causes further need for temperature compensation in 

temperature-unstable cuts.  

• Dual line configurations in theory shows a good alternative to avoid all unwanted 

effects, however, it is not easy to obtain and operate two identical sensors operating 

exactly under same conditions. Especially, when selectivity and sensitivity in biosensors 

is required, the assembly includes several layers, in addition to several fabrication steps, 
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which makes obtaining two identical sensors problematic. Other controlled experiment 

techniques should be developed to enable testing on the same sensor with complete 

reversibility and reproducibility. 

• In several recent studies, there's a clear movement towards using smaller and 

smaller devices for lower sample size requirement and more rapid detection, usually with 

integrated microfluidics. The results were successful in reaching goals; however, 

integration with microfluidics and handling of small sample sizes is not very easy and is 

costly. This trend is clearly helpful, when multiple tests should be run with very small 

sample sizes, such as bodily fluids or tests for biomarkers from cells extracted from 

cancerous tissues. Although, smaller sample sizes enables very robust detection, cost and 

integration problems makes small size favorable only when access to sample is very 

limited. The aim in the designs should focus on most feasible solution for size, cost, 

response time and complexity. The research should focus on designing simpler and lower 

cost, point of care systems, especially for detection of pathogens and viruses for global 

healthcare. Handling of samples and reagents should also be considered while designing 

systems for these purposes. 

• No antibody immobilization technique has been proven to be optimal, up-to-date. 

Although, some studies claim the method they're using as being the most effective 

method, there's not a published work that compares and evaluates the methods 

objectively.  

• SAW Immunosensors offer several advantages outlined in the previous sections, 

however selectivity still remains a main issue. In order for SAW Immunosensors to be a 

viable alternative to other well developed techniques such as SPR and immunoessays, 
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selectivity problem should be addressed. Selective detection of target analytes from 

complex solutions requires further research and new methods. 
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CHAPTER 3. ANALYTICAL MODELING  

 

Acoustic propagation problem in multi-thin-layer systems is essential for 

understanding of gravimetric (or mass loading) sensors. The solution necessitates 

simultaneous solution of wave equation in each layer, with continuity of stress and 

displacement boundary conditions. As discussed in previous chapter, Guided or Love 

waves are obtained when thin mass layers are formed on top of SH SAW propagating 

substrates. The layers deposited, spun or grown on top have wave-guiding effect, by 

confining energy to surface, and increasing the sensor sensitivity.  

The wave propagation and related sensitivity can be investigated in two steps. The 

layer guiding effect of multi-layer thin films should firstly be treated by wave equation 

with boundary conditions, in the form of dispersion curves. Detailed investigation of 

sensing mechanism with numerous parameters involved using exact analytical solutions 

is usually complex, and sometimes even not possible. However, sensing mechanism can 

be investigated by perturbation methods, which was first presented by Auld for acoustic 

wave propagation [9]. The method involves first or higher order approximations to exact 

analytical solution, which results in rather less complicated explicit or simple implicit 

equations.  

The actual wave propagation problem on a piezoelectric substrate involves 

anisotropy (in substrate and possibly in guiding layer), piezoelectricity, and three 

dimensional wave vectors (leaky waves). Exact modeling of all these is possible, 
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however is very complicated and not very feasible for engineering purposes. For this 

reason, several reasonable simplifications and assumptions were made.  

The substrate and the guiding layer were assumed as ideal elastic and isotropic 

materials with shear velocities equal to actual materials in the specified SH SAW 

direction. The substrate was assumed as non-piezoelectric; when materials with low 

piezoelectricity (like quartz) were considered or when there were no significant electrical 

field perturbations present. No significant electrical perturbation assumption is valid, 

when the there is no short on the propagation path between IDTs physically. The leaky 

nature of SH or SSBW waves was also neglected, since Love waves are effective in 

energy confinement to the surface. The effect of the assumptions was neutralized, at the 

very end of section by comparisons with experimental results.   

Shear horizontal polarized wave propagation was investigated step by step by 

dispersion solution and perturbation analysis. The sensing and wave guiding layers were 

modeled as elastic mass (for metal and dielectric films) and as viscoelastic layers using 

Maxwell’s model for fluids, polymers and layers of proteins [78, 79].  

A detailed parametric study on dispersion, sensitivity and perturbation analysis 

was done for each case and results were compared. The case and model has been 

investigated in several papers in literature [79-83], however, no similar detailed analysis 

and parametric studied have been presented elsewhere, to authors knowledge.  
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3.1. Analytical Modeling of Wave Propagation 

 

3.1.1. Three Layer Model  

 

The simplest model for the Love wave propagation involves shear horizontally 

polarized acoustic waves in a system of the substrate, guiding layer and the mass layer, 

with layer thicknesses ts, tg and tm respectively. The mass layer was the layer, in which 

the sensing takes place with increasing mass and thickness during operation. Using the 

assumptions and simplifications mentioned above, the problem were treated as a two 

dimensional system with polarization x2 direction and propagation in x3 direction as 

presented in Figure 7.  

 

 

Figure 7. Overview of a three layer system 
 

Considering wave propagation in an isotropic and non-piezoelectric medium, in 

which uj is the particle displacement; ρ is the density; λ and µ are the Lame constants and 

Sij is the strain tensor; the equation of motion can be written as:  
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(3) 

 

where Sij is the strain tensor: 

 

1

2
ji

ij

j i

uu
S

x x

 ∂∂
= +  ∂ ∂ 

 (4)  

 

The coordinate axes are placed such as x1-x2 plane coincident with the upper 

surface of the substrate and x3 as normal to this plane with x3 =0 defining the upper 

substrate surface, as presented in Figure 7. The solution of the multilayer wave 

propagation equation is done by trial solutions for displacements with propagation along 

the x1 axis and displacement in x2 axis, for SH waves. The trial solutions for substrate (s), 

guiding layer (g) and mass layer (m) can be constructed, satisfying these conditions: 

 

( ) ( )1 13 30,1,0 s s
j t k xT x T x

s s su A e B e e
ω −− = +   (5)  

 

( ) ( )3 3 1 10,1,0 g gjT x jT x j t k x

g g gu A e B e e
ω− − = +   (6)  

 

( ) ( )1 13 30,1,0 m m
j t k xjT x jT x

m m mu A e B e e
ω −− = +   (7)  

 

where and k1 = ω/v gives the phase speed v  of the solution, As,g,m and Bs,g,m are constants 

that determine wave propagation characteristics and Ts,g,m are wave vectors. Because of 
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initial assumption of propagation only along x1 direction strain tensor Sij can be takes as 

zero. Substituting trial solutions Equation (5) -(7) into Equation (3) for each layer, the 

wave vectors can be obtained as: 

 

 
2 2

2 2

1 1
s

s

T
v v

ω
 

= − 
 

 

 

(8) 

 
2 2

2 2

1 1
g

g

T
v v

ω
 

= −  
 

 

 

(9) 

 
2 2

2 2

1 1
m

m

T
v v

ω
 

= − 
 

 (10) 

 

where vs, vg and and vm are shear velocities of substrate, guiding layer and mass layer 

respectively. The resulting wave vector Ts is different from the others, because the trial 

solution was chosen in a way to ensure non-imaginary Ts value. This condition arises 

from Love wave theory, in which shear acoustic velocities of any guiding layers should 

be less than of the substrate. Shear velocities of isotropic, elastic materials can be 

calculated using shear modulus and density values with the formula vs,g,m=(µs,g,m/ρs,g,m)1/2. 

A love wave solution is obtained when ts→∞. In such case, wave vector Ts is real, leading 

to real vs and particle displacement decaying with depth (i.e. surface waves).  

The solution to dispersion problem is obtained by applying displacement and 

stress boundary conditions. The displacement boundary conditions are continuity of 

particle displacement at interfaces and the stress boundary conditions are continuity of 
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stress at the interfaces and stress-free top and bottom surfaces. The displacement 

boundary conditions and corresponding equations are: 

 

( ) ( )3 30 0  ;  s g s s g gu x u x A B A B= = = + = +  (11) 

 

( ) ( )3 3 ; g g g g m g m gjT d jT d jT d jT d

g g m g g g m mu x d u x d A e B e A e B e
− −= = = + = +  (12) 

 

The stress boundary condition, requires calculation of stress and in this problem, 

we will impose the τi3 component of the stress tensor, which is given by: 

 

2
3 2

3

i i

u

x
τ δ µ

 ∂
=  

∂ 
 

(13) 

 

Using this formula for stress, the other four boundary conditions including two 

continuity and two free stress conditions are as follows: 

 

( ) 0 ; 0s s s sT d T d

s s s sd A e B eτ −− = − =  (14) 

 

( ) ( ) ( )0 ; 0m m g m m gjT d d jT d d

m m g m md d A e B eτ − + +
+ = − =  

(15) 

 

( ) ( )0 0  ;s gτ τ=   (16) 
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s s s s s s g g g g g gT A T B j T A j T Bµ µ µ µ− = −  

 

( ) ( ) ;g g m gd dτ τ=  

g g g g m g m gjT d jT d jT d jT d

g g g g g g m m m m m mj T A e j T B e j T A e j T B eµ µ µ µ− −− = −  

(17) 

 

The dispersion problem defined by these set of six equations with six unknowns, 

can be solved simultaneously using a matrix approach by defining constants ξsg and ξmg: 

 

s s
sg

g g

T

T

µ
ξ

µ
=  

(18) 

 

m m
mg

g g

T

T

µ
ξ

µ
=  

(19) 

 

The system of equation can then be written in matrix form as: 

 

( ) ( )

1 0

0

0

0

0

1 1 1 0 0

0 0

0 0 0 0

0 0 0 0

1 1 0 0

0 0 0

g g g g m g m g

s s s s

m m g m m g

g g g g m g m g

s
jT d jT d jT d jT d

s
T d T d

g

jT d d jT d d
g

sg sg m

jT d jT d jT d jT d
mmg mg

A

e e e e B

e e A

Be e

j j A

Be e e e

ξ ξ

ξ ξ

− −

−

− +

−

+

−

     

 
 
 
 
 
 
 


       
 
   


  

− −
−

−
−

− −

− −

=

−








 
 
 

 (20) 
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In order to have a non-trivial solution, the determinant of the first matrix should 

be equal to zero. The values of v satisfying this equality are the phase velocities of the 

system for any given set of parameters. The dispersion equation after extensive algebraic 

manipulation has presented in the reference [79], and also verified by the author as  

 

( ) ( ) ( ) ( ) ( )tan tanh tan 1 tan tanhg g sg s s mg m m sg g g s sT d T d T d T d T dξ ξ ξ = − +   (21) 

 

Note that, the dispersion equation (21), represents the three layer system with 

substrate s, guiding layer g and perturbing mass layer m. Solution to system with 

substrate and guiding layer, without the mass layer, can be obtained by setting mass layer 

thickness dm to zero.  

 

3.1.2. Generalized Model of a N Layer System 

 

The system represented by matrix equation (20) with two additional layers on top 

of the substrate, can be expanded to a system of infinite number of layers on top of a 

substrate. This multilayer system approach would essentially helpful for modeling 

sensors, which requires numerous different intermediate layers to achieve sensing. For 

expanding the model to multilayer system, let us firstly consider another (third) 

viscoelastic layer with subscript f. Similar to previous derivation, assume a trial solution 

uf with the wave vector Tf  and thickness df: 
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( ) ( )3 3 1 10,1,0 f fjT x jT x j t k x

f f fu A e B e e
ω− − = +   (22) 

  

2 2

2

1 1
f

f

T
v v

ω
 

= −  
 

 

 

(23) 

 

The additional boundary conditions, similar to equations (11) to (17); are 

continuity of displacement at x3=dm+dg, and the stress free surface of the top layer at 

x3=dm+dg+df. The additional boundary conditions corresponding to these are: 

 

( ) ( ) m g m f g mu d d u d d+ = +  

( ) ( ) ( ) ( ) m g m m g m f g m f g mjT d d jT d d jT d d jT d d

m m f fA e B e A e B e
− + + − + +

+ = +  

(24) 

 

( ) ( ) ( )0 ; 0f m g f f m g fjT d d d jT d d d

f m g f f fd d d A e B eτ − + + + +
+ + = − =  

(25) 

 

Also, with the addition of the new layer, the stress free surface condition in 

equation (15), changes to continuity of stress at x3=dm+dg as:  

 

( ) ( ) ;m m g f m gd d d dτ τ+ = +  

( ) ( ) ( ) ( )m m g m m g f g m f g mjT d d jT d d jT d d jT d d

m m fm f fm fA e B e A e B eξ ξ− + + − + +
− = −  

(26) 

 

where ξfm is defined as 
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f f

fm

m m

T

T

µ
ξ

µ
=  

(27) 

 

In order to obtain a generic system, assume the multilayer structure illustrated in 

Figure 8. Instead of deriving the equation from the beginning, the order of the equations 

can be rearranged by interchanging rows. Also, the new equations resulting from the 

additional layers should also be placed in order. The six equations representing boundary 

conditions for three layer system is reordered as: 1) us(0)=ug(0); 2) τs(-ds)=0; 3) τs(0) = 

τg(0); 4) τg(dg) = τm(dg) 5) ug(dg)=um(dg) 6) τm(dg+dm)=0. The stress free top surface 

boundary condition is placed at the bottom every time, in order to avoid confusion by 

changing the condition to stress continuity after addition of extra layer. Placing the two 

new equations at the bottom with displacement continuity first and free surface at the 

bottom, we can obtain the dispersion system for 4 layer system as in equation (28). 

Consider a general system, in which the layer subscripts starts with 1 for the layer 

at the top of the substrate and up to i layers, that are placed on top of each other. In this 

case, the coefficient matrix is a (2i+2) by (2i+2) matrix, which was a 6x6 matrix for the 

three layer case given in equation (20). Following the pattern and the formula for the 

matrix; one can find that, each additional layer adds two extra rows and columns to the 

coefficient matrix. The elements in the new rows are all zero except for six elements.  

A system composed of the substrate and i number of additional layers, with 

formulas of the added elements is given in equation (29). Note that the two non-zero 

elements added at the last row of previous layer (a2i,2i+1 and a2i,2i+2) represents continuity 

of stress between the layers; the row before the last row with non-zero elements  a2i+1,2i-1 , 
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a2i+1,2i , a2i,2i+1 and a2i,2i+2 is the displacement continuity, and last row with non-zero 

elements a2i+2,2i+1 and a2i+2,2i+2 is the top free surface. Another advantage of this 

representation is that, it already lists down the dispersion equation of the simpler systems. 

The first 4x4 matrix represents the two layer system, and 6x6 matrix represents the three 

layer system. 

In this study, closed form equations up to 4 layers are presented. Beyond that, the 

approach should involve implicit solution of the coefficient matrix, which requires 

extensive computing and advanced numerical solution approaches. 

 

  

Figure 8. Generalized system with N=i+1 layers. 
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( ) ( ) ( ) ( )

( ) ( )
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 (28) 

 

( ) ( ) ( ) ( )

1 1 1 1 2 1 2 1

1 1 1 1 2 1 2 1

2 2 1 2 2 1 3 2 1 3 2 1

2

1 1

21 21

32 32
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3.2. Maxwell’s Viscoelasticity Model 

 

As discussed previously, biosensors usually work under liquid loading, mostly 

with aqueous solutions. Furthermore, intermediate layers employed for biosensing, such 

as polymer coatings (SU-8, Parylene, PMMA) and organic layers of proteins, antibodies, 

which act like rubbery polymers [78]. As the name implies, viscoelasticity represents the 

transitional behavior between viscous (fluids) and elastic (solids) materials. Assuming a 

viscous and incompressible fluid and negligible pressure gradient, Navier-Stokes 

equation can be reduced to: 

 

2ve ve
ve

ve

v
t

υ η
ρ

∂
= ∇

∂
 

(30) 

 

in which, vev  is the fluid velocity and veη  is the dynamic viscosity of the fluid. Similar to 

procedure applied in previous section, assume a trial solution with a complex time 

dependence such as j t

ve vev v e ω= , Equation (30) can be rewritten, with particle 

displacement uve as 

 

2
2

2
ve

ve ve ve

u
j u

t
ρ ωη

∂
= ∇

∂
 

(31) 

 

The equation, rewritten with particle displacement is very similar to equation (3) 

without the strain tensor; and shear modulus µ replaced by the Newtonian fluid viscosity 

factoy jωηf. A similar replacement can also be done in the stress formula, given by 
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Equation (13). In Maxwell’s model of viscoelasticity, real valued shear modulus µ is 

replaced by the complex shear modulus G with limits of µ for ideal elastic solid and jωηf 

for ideal elastic fluid such as: 

 

1
ve

ve

j
G

j

ωη
ωτ

=
+

 
(32) 

 

The relaxation time τ is defined such as /veτ η µ= ; so that Gve is able to represent 

the limiting conditions. When ωτ approaches infinity (solid limit) and 0 (Newtonian 

fluid). This approach and replacing real-valued elastic shear modulus with the complex 

viscoelastic Gve, enables us to incorporate viscoelasticity into the problem. Another 

important feature of the viscoelastic or any other thin films is that, whether the film can 

be treated as acoustically thin or thick. Acoustically thin films enable several 

assumptions, which are useful in simplifying solutions and perturbation equations, which 

will be described in detail. This differentiation can be made in viscoelastic films, by 

defining and investigating the viscous penetration depth. The penetration depth δ can be 

defined as ( )2 /ve veδ η ωρ= [79]. For investigating its effect, assume the mass layer 

discussed in previous section is viscoelastic with Tm. Remember that, the wave vector for 

this layer is:  

 

2 2

2 2

1 1
m

m

T
v v

ω
 

= − 
 

 
(33) 
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with complex shear velocity vm calculated as: 

 

( )
2

1
m m

m

m m

G j
v

j

ωη
ρ ρ ωτ

= =
+

 
(34) 

 

Substituting vm into wave vector Tm and replacing /m mη ρ  with 2 / 2δ ω , from the 

definition of penetration depth: 

 

( ) 2
2

2 2

2 1
m

j j
T

v

ωτ ω
δ

 +
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(35) 

 

Equation (35) can be rewritten, using the wave number k=ω/v=2π/λ and 

reorganizing: 

( )
2

2

2

1
2 1 2mT j j

δ
ωτ π

δ λ

  = − + −     
 

(36) 

 

In an acoustically thin film, one would expect that the wavelength is much bigger 

than the penetration depth, i.e. δ/λ→0; the wave vector reduced to 

 

( )1
2 1mT j jωτ

δ
= − +  

(37) 
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which is independent of wave speed v. Considering limits of the relaxation time ωτ: for 

the Newtonian fluid, wave vector is purely imaginary meaning damped oscillations and 

for elastic solid, is purely real with undamped wave propagation. 

Another important parameter that can be obtained from the analysis is the 

insertion loss. Insertion loss is defined as the magnitude of the signal that should be 

supplied to system to overcome attenuation. Hence, the imaginary part of the velocity in 

propagation (x1 direction) is related with attenuation, and insertion loss can be calculated 

with imaginary part of the wave number. The decay, or attenuation, in displacement, per 

an arbitrary length L in the direction x1 for the system is the ( )1exp Imk L , the insertion 

loss in decibels per unit length can be calculated as [79]: 

 

10

dB
20(log )  

m
IL e Im

v

ω =   
 (38) 

 

It should be noted that, the insertion values calculated from this equation, only 

represents losses related with system; with the assumption of lossless substrate. However, 

almost all typical piezoelectric materials are leaky, which means there’s inevitable natural 

attenuation related arising from the substrate.  
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3.3. Numerical Solution of Dispersion Relations 

 

3.3.1. Three Layer System 

 

The perturbation analysis and resulting equations presented in the next chapter, 

relies on the dispersion solutions for the wave propagation. In the perturbation equation, 

perturbation caused by the mass perturbing layer will be investigated, using the 

dispersion curves for the system composed of substrate and the guiding layer. For this 

reason, the numerical solution of dispersion will be obtained for these two layers. The 

investigations on actual sensitivity, depending on the target quantity, will be presented at 

next chapter. The numerical solution of dispersion curve for substrate and guiding system 

involves numerical solution of equation (20) by setting dm as 0, resulting in: 

 

( ) ( )tan tanhg g sg s sT d T dξ=  (39) 

 

The equation is implicit, which means, the roots of the equation, corresponding to 

phase velocities should be solved numerically. The equation can be handled numerically 

without significant modification, for ease of numerical solution, some additional 

manipulations were done. Considering the guiding layer is viscoelastic and substrate is 

elastic solid, equation (39) can be rearranged in the form: 
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2 2

1 tan 1 0s s

g g

dx x
tanx

G x d

µ ββ
β β

         + − − =                 

 (40) 

 

where 
g gx T d= , 2 / (1g g gG j v jρ ωτ ωτ∞= + , ( )

1/2
/ 1g gv v j jωτ ωτ∞  = +  , gv∞  is the solid 

limit of the shear velocity , z=f.d/vg, ( )1/22 2 1/ 1/g g sd v vβ ω= − ( )2 22 1/ 1/g g sv z v vπ ∞= −  and 

using the identity ( ) ( )tan    .jtanh= −  

A Matlab routine is developed, in order to solve the implicit equation in range of  

0 < z < 1, which is given in Appendix A. All the material properties and outputs are 

defined in one main m-file, and the problem is defined in a subroutine that is called from 

the main m-file. The solution of the implicit equation is performed by a freeware 

subroutine named “LMFnlsq”, which is available through Matlab file exchange central 

[84]. Use of the subroutine was required because the built-in solvers in Matlab are unable 

to solve complex implicit equations. LMFnlsq was primarily developed for curve fitting 

using minimization of a sum of squares method by Levenberg-Maquardt algorithm. The 

code was later adapted by the coder to solve the roots of implicit complex equation, and 

author adapted the subroutine to solve equation (40). The solution requires inputting 

initial values to subroutine. At first, the real valued shear velocity of the substrate was 

used as the initial value for the first run; and solution obtained from this first run was fed 

to next calculation as the initial value. The method worked for the majority of the range, 

but for the values of z smaller than 0.2, solutions of x corresponding to velocities higher 

than shear velocity of the substrate was obtained. This is not physically possible for 

SAWs so to overcome the problem in this range, another subroutine was developed to 
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form an initial value matrix, later to be fed into subroutine. The method and code is 

similar to perturbation solutions, which forms a matrix with real valued initial guesses. 

The solution to guided wave dispersion parameter x is obtained with the codes for non-

dimensional thickness z in steps of 0.002. The x values, then are converted back to phase 

velocity using the formula for each z  as:  

 

2

1
2

g

g

g

v
v

xv

zvπ ∞

=
 

−   
 

 
(41) 

 

The result obtained is the first Love wave mode and the solutions to higher modes 

can be obtained with modifications to subroutine, which is discussed in detail at the 

reference [79].  

 

3.3.2. Fluid Loaded (Four Layer) System 

 

Similarly, the numerical solution of the fluid loaded dispersion curve is also 

required for fluid loaded perturbation relations presented in the next chapter. Again note 

that, the dispersion equation is represented by the 8x8 matrix on the upper left corner of 

matrix in equation (29) or equation (28) itself. Similarly, the mass perturbing layer is 

neutralized by setting the dm to 0 and the system containing the substrate, guiding layer 

and fluid is solved. After algebraic manipulation, the dispersion equation for the system 

can be obtained, with terms related with mass layer placed at one side of the equation as 

given in [79] and verified by the author as: 
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where any ξij value is defined as (except when substrate s is involved with G→µ):  

 

i i
ij

j j

GT

G T
ξ =  

(43) 

 

Note that the dispersion equation is the left side equation being equal to zero, 

when dm=0. The equation (42), with left side being equal to zero, is needed to be 

numerically solved, in order to obtain the dispersion curves. This equation, which 

requires defining an extra term, in addition to x and β defined for the previous case is 

more complex than the previous one. Defining ( )1/22 2 1 / 1 /g f gd v vγ ω= − , with left side of 

equation (42) being equal to zero, dispersion equation can be rewritten using the defined 

parameters; formed by the author as: 
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(44) 
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The solution for x can be handled similarly for each z, and phase velocity 

corresponding to z values can be calculated using equation (44).  

 

3.4. Parametric Study 

 

In this section, a parametric study on dispersion analysis of typical substrates and 

guiding layers and liquid types using the numerical solution method is presented. The 

effects of material selection, operating frequency, degree of viscoelasticity are 

investigated as a function of guiding layer thickness. Dispersion curves represent the real 

part of the phase velocities. The imaginary parts of the phase velocities are related with 

attenuation and insertion loss, which will not be considered in this study.  

 

3.4.1. Dispersion Solutions of Substrate and Guiding Layer 

 

The parametric study for the dispersion of substrate and guiding layer is aimed to 

investigate the effect of material selection, operating frequency, degree of viscoelasticity. 

The dispersion relation can easily obtained using equation (39) and using the numerical 

procedure outlined in 3.3.1. As mentioned in previous sections, the dispersion curves will 

also be used to determine sensitivity by using perturbation relations. 

Selection of materials was based on the literature survey given in Table 1. The 

substrate materials chosen for study are the most typical SH supporting substrates: ST-cut 

quartz (ST-Quartz), 41° YX lithium Niobate (41°LiNbO3) and 36° YX lithium tantalate 

(36°LiTaO3). Similarly a wide range of guiding layers investigating including silicon 
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dioxide (SiO2), metals (chromium-Cr and Gold-Au), and polymers (Parylene-C and Su-

8). The material properties required for the study are the shear velocity and density for 

each material. The properties used for substrate and guiding layer materials are listed in 

Table 2. Densities (ρ) of all the materials are found in literature, however not all the shear 

velocities are available. For the ones those missing shear velocities, the values are 

calculated using the shear modulus and density. Shear modulus (G) can be calculated 

using Young’s modulus (E) and Poisson’s ratio (v) as: G=E/[2(1+ v)]. The shear 

velocities are then calculated using the formula vs=(G/ρ)1/2.  

 

Table 2. Material properties for parametric study. 
 

  E (GPa) v G (GPa) ρ (kg/m3) Vs (m/s) 

Substrate  

ST-Quartz - - - 2650 [85]  4990 [85] 

41°LiNbO3 - - - 4650 [12] 4795 [2] 

36°LiTaO3 - - - 7460 [85]  4211 [85]  

Guiding Layer 

SiO2 70 [86] 0.17 [86] 30 2160 [86] 3359 

Chromium 279 [4] 0.21 [4] 110 7194 [4] 3936 

Gold 78 [4] 0.44 [4] 27 19320 [4] 1192 

SU-8 4 [87] 0.22 [87] 1.2 1190 [87] 1012 

Parylene-C 4 [88] 0.4 [89] 1.4 1289 [88] 1052 

Protein Film 
  

10-3-10-4 

[78] 
1000 [78] 32 
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• Non-dimensional general dispersion relation: the first graph showing the 

numerical results of the dispersion relation is illustrated in Figure 9. In this figure, the 

data shown is for ST-Quartz substrate with Parylene-C guiding layer and relaxation time 

ωτ is taken as 106 (solid limit). The y-axis is the phase velocity and the x-axis is the 

nondimensional guiding layer (Parylene-C) thickness z, defined previously as z=dg.f/vg
∞, 

where dg is the thickness, f is the frequency and vg
∞ is the shear velocity in guiding layer. 

As depicted easily from the figure, the phase velocity remains almost constant (very close 

to shear velocity of quartz ≈ 5000 m/s) almost up to a z of 0.2. After this point there is a 

gradual fall is observed with phase velocity approaching shear velocity of guiding layer 

as expected. Note that for an operating frequency of 100 MHz, the thickness 

corresponding to z=1 for Parylene-C is 10.5 µm.  

 

Figure 9. Dispersion curve with substrate: ST-Quartz, guiding layer: Parylene-C, 
frequency:100 MHz, ωτ = 106,x-axis: z. 
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• Operation frequency: In this figure the effect of frequency on dispersion curve is 

presented. The data shown is for ST-Quartz substrate with Parylene-C guiding layer and 

relaxation time ωτ is taken as 106(solid limit). The y-axis is the phase velocity and the x-

axis is guiding layer (Parylene-C) thickness. As seen from the figure, the dispersion 

curves for frequencies 10, 100 and 1000 MHz show similar characteristics. The phase 

velocity remains constant up to a thickness, corresponding to z values 0.2, which is 

expected from the previous figure. The x-axis is presented in logarithmic scale for better 

understanding.  

 

Figure 10. Dispersion curve with substrate: ST-Quartz, guiding layer: Parylene-C, 
frequency:10, 100 and 1000 MHz, ωτ = 106,x-axis: guiding layer thickness. 

 

• Relaxation time: In Figure 11, the effect of relaxation time ωτ, or viscoelasticity 

of the guiding layer; on dispersion curve is presented. The data shown is for ST-Quartz 

substrate with Parylene-C guiding layer, frequency is 100 MHz and relaxation time ωτ is 
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taken as 10 (liquid) and 106 (solid). The y-axis is the phase velocity and the x-axis is 

guiding layer (Parylene-C) thickness. As seen from the figure, the dispersion curves for 

two relaxation times are almost exactly the same, except for minor difference in the 

transition region, corresponding to a range of 0.2 to 0.3 z. The relaxation times for 10 

MHz and 1000 MHz was also investigated and similar characteristics were observed. 

Thus, the results for different frequencies are not illustrated in separate figures. 

 

Figure 11. Dispersion curve with substrate: ST-Quartz, guiding layer: Parylene-C, 
frequency: 100 MHz, ωτ = 10 and 106,x-axis: dimensionless guiding layer thickness. 
 

• Substrate material: Figure 12 shows the dispersion of three different substrate 

materials of interest, with same guiding layer. The presented data is for ST-Quartz, 

41°LiNbO3 and 36°LiTaO3 substrates with Parylene-C guiding layer, with a frequency of 

100 MHz, and relaxation time is taken as 106. The x-axis is normalized guiding layer 

(Parylene-C) thickness. As seen from the figure, the only parts of the dispersion curve 

ωτ 
ωτ 
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affected are the regions up to 0.25z. The dispersion curves start with values very close to 

shear velocities of substrate materials up to 0.25z and gradually decreases similarly to the 

shear velocity in guiding layer. Note that, the graphs were drawn using same z. The IDT 

periodicity required for same frequency operation on these substrates are different (shear 

velocities are different). For operation at same frequency, the gradual decrease in phase 

velocity happens in same region.  

 

Figure 12. Dispersion curve for substrate: ST-Quartz, 41°LiNbO3 and 36°LiTaO3, 
guiding layer: Parylene-C, frequency: 100 MHz, ωτ=106,,x-axis: dimensionless guiding 
layer thickness. 
 

• Guiding layer material: Final figure (Figure 13) illustrates the dispersion of five 

different guiding layer materials of interest, listed in Table 2. The dispersion curves for 

guiding layers with substrate materials ST-Quartz and 36°LiTaO3 are illustrated below. 

Dispersion with 41°LiNbO3 is not depicted, because 41°LiNbO3 has intermediate values 
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of density and shear velocity compared with other two alternatives. ST-Quartz and 

36°LiTaO3 represent the limiting conditions. The guiding layers of SiO2, chromium. 

Gold, SU-8 and Parylene-C, with two substrate materials at a frequency of 100 MHz, and 

relaxation time of 106. are given in Figures (15(16. The x-axes are the actual guiding 

layer thickness, unlike normalized thickness z is used in previous figures. The use of z 

avoided, because each guiding layer has different shear velocities. 

The data series in Figure 13 is slightly different from the values presented in 

previous figures. First of all, for gold, phase velocities with SU-8 and Parylene-C layers, 

which have lower shear velocities, are calculates up to 5z; in able to be comply with SiO2 

and chromium layers. The center of gradual decrease, still correspond to 0.25z for SU-8 

and Parylene-C layers. However, gold differs from the two polymers; with almost no 

constant phase velocity region in lower z values (or thickness) and almost constant slope 

in the transition region. This is related with extremely high density of gold compared 

with polymers (almost 15 times). The dispersion of SiO2 and chromium is different from 

the others. They both have higher individual shear velocities and moderate densities 

(higher than polymers, lower than gold). They both have a lower slope and smoother 

transition, again with the phase velocity approaching shear velocity of guiding layer with 

increasing thickness. In next figure, same guiding layers with lithium tantalate are 

presented. 
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Figure 13. Dispersion curve for substrate: ST-Quartz, guiding layer: SiO2, chromium, 
gold, SU-8 and Parylene-C, frequency: 100 MHz, ωτ=106,,x-axis:  guiding layer 
thickness. 
 

The results presented in Figure 14 are similar to Figure 13, with some minor 

differences. For gold, SU-8 and Parylene-C layers, there is no significant change in 

trends. Their shear velocities are still significantly lower than substrate layer. The 

densities of polymers SU-8 and Parylene-C are also significantly lower than lithium 

tantalate, so they remained the same. However, for the gold, as the density of lithium 

tantalate is much closer to gold than quartz, the transition region has slightly increasing 

slope this time. SiO2 and chromium dispersion curves are similar to ones with quartz 

substrate, again with some differences. First of all, both of their individual shear 

velocities are closer to lithium tantalate, then of quartz resulting in even smoother 

transition regions. They still have lower slopes, while the phase velocity approaching 
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shear velocity of guiding layer with increasing thickness. The most interesting outcome 

of the figure is the dispersion of chromium, which is almost a straight line in the range. 

This is because both the density and shear velocity of chromium is very close to of 

lithium tantalate.  

 

 

Figure 14. Dispersion curve for substrate: 36°LiTaO3, guiding layer: SiO2, chromium, 
gold, SU-8 and Parylene-C, frequency: 100 MHz, ωτ=106,,x-axis: guiding layer 
thickness. 
 

Investigating these two limiting substrate materials, we can observe that; a 

transition region with a gradual decrease in phase velocity exists, where there is a 

relatively large shear velocity difference between substrate and guiding layer. As the 

shear velocity of guiding layer gets close to shear velocity of substrate material, smoother 

transition is observed. An interesting outcome is also observed for density. Large density 
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differences between substrate and guiding layer results in an almost constant slope 

transition region. Minimal density difference, does not result in a sharp transition, 

however results in constant slope transition throughout the range similarly. 

 

3.5. Model Verification 

 

The verification of the analytical model was done experimentally with a set of 

experiments done for dispersion curve. The relationship between guiding layer thickness 

and phase velocity of the guided waves were investigated on two-port delay path devices. 

Two different types of wafers: ST-Cut Quartz and 41°LiNbO3 were used with two similar 

IDT designs with different pitches: 300 (number of IDT pairs: N=20) and 80 µm (N=50). 

However, none of the guiding layer materials used in the parametric study was 

found feasible in the desired thickness range or not accessible. For metals, the thickness 

required was not found as feasible because of the frequency of devices used. Thus, 

verification is done using photoresist polymers Shipley S1813 (Shipley, Marlborough, 

MA, USA), and AZP4260 (AZ Electronic Materials, Branchburg, NJ, USA), because of 

the thickness requirements. Thickness requirements were determined using non-

dimensional thickness z and guiding layer properties. 80 µm pitch sensors were spin 

coated with S1813 and 300 µm sensors with AZP4620. The material properties for S1813 

is given in reference [90] with Young's Modulus of 8 GPa and density of 1200 kg/m3. 

The shear velocity for the phororesist was calculated as 1600 m/s with an assumed 

Poisson’s ratio around 0.3. However, to author's knowledge, there is no source for 

AZP4620's mechanical properties. Both photoresists are based on the same NOVALAC 
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polymer, thus it was assumed that AZP4260 has the same characteristics as S1813. The 

photoresists were spin coated with respect to given thickness information and sheets. The 

spinning speed were chosen as 3000 rpm for S1813 (resulting in 1.6 µm thickness [91]) 

and 4000 rpm for AZP4260 (resulting in 7 µm thickness [92]). The photoresist layers 

were spun on top of each other, after softbaking with 60 s (S1813) and 85 s (AZP4260). 

The soft-bake time successively lengthened by 60 s for S1813) and 85 s for AZP4260 

after each spinning. The layers stacked until the response at the monitored frequency 

vanished. 3 layers were spun for ST-quartz and 4 layers were spun for 41°LiNbO3. The 

results were presented in Figure 15Figure 18, for all 4 cases. However, the data points did 

not fit to dispersion curves perfectly. The method for data-fit suggested in [81] is 

employed to modify the dispersion curve. In the reference, authors stated that, using an 

effective density of 2.6 times the actual density of the guiding layer was essential to fit 

the dispersion curve to the data points. In Figure 5 of [81], it is seen that this approach 

were able to fit the dispersion of PMMA guiding layer with LiTaO3 substrate to 

experimental data points. Following that fashion, the properties of the guiding layers 

were changed to fit the data points, and the velocity and density used to fit the data were 

listed below the figures, and also summarized in Table 3. 

 

Table 3. Effective shear velocity and density values used for data fit. (Original values:  
Vg =1600 m/s and ρg= 1200 kg/m3) 
 

Substrate Pitch Vg,eff (m/s) ρg,eff (kg/m3) 

ST-Quartz 
300 µm 1600 3200 
80 µm 3200 1200 

41°LiNbO3 
300 µm 1600 5000 
80 µm 3200 2200 
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Figure 15. Data points and curve fit for substrate: quartz, λ:80 µm, guiding layer: S1813 
(Vg,eff =3200 m/s, ρg,eff =1200 kg/m3) 

 

Figure 16. Data points and curve fit for substrate: LiNbO3, λ:80 µm, guiding layer: 
S1813 (Vg,eff =3200 m/s, ρg,eff =2200 kg/m3) 
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Figure 17. Data points and curve fit for substrate: quartz, λ: 300 µm, guiding layer: 
AZP4620 (Vg,eff =1600 m/s, ρg,eff =3200 kg/m3) 

 

Figure 18. Data points and curve fit for substrate: LiNbO3, λ: 300 µm, guiding layer: 
AZP4620 (Vg,eff =1600 m/s, ρg,eff =5000 kg/m3) 
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As depicted from Table 3, use of effective density, similar to [81],  was required 

to fit the dispersion curve to the data points for 300 µm pitch sensors with AZP4620. 

However, for 80 µm pitch sensors, both doubling the shear velocity and increasing the 

density was required for 41°LiNbO3 and only doubling the velocity was enough for 

quartz. There's no clear trend however, it can be observed that the effective velocities 

used were the same for the same pitch sensors. Furthermore, the ratio of effective 

densities between 300 µm and 80 µm is similar (≈2.5) for each substrate individually. 
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CHAPTER 4. PERTURBATION ANALYSIS 

 

4.1. Perturbation Theory 

 

Perturbation theory for acoustic waveguide problems was first presented by Auld 

[9]. Perturbation methods are analytical approximation techniques to provide guidelines 

for computations using numerical methods, and also for problems in which direct 

computation is not feasible [9]. Perturbation methods are based on the assumption that 

there are small changes in the solution, caused by small changes, or perturbations. 

Several different perturbation equations can be derived for a system with different 

parameters and degrees of approximation (order of expansion). Even though nowadays 

processing computational tasks is not a problem, the approximations still enable rapid 

analysis of a system, which can give detailed insight to problems. 

Auld derived the perturbations from the complex reciprocity equation presented in 

the same reference [9]. The complex reciprocity equation given in equation (45) below 

was derived to relate two different possible solutions to a system, form the basis of 

derivation. In this equation, v is velocity, T is stress, Φ is potential difference, D is charge 

density, ρ is density, sE is strain under constant electric field, d is piezoelectric strain 

constants, ε is dielectric coefficient, and F is force. The equation relates two possible 

solutions (1 and 2) to the set of partial differential ‘field’ equations and related 

constitutive relations of coupled acoustic and electromagnetic system. The details of the 
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derivation of the complex reciprocity equation is beyond scope of this dissertation, and 

can be found in reference [9]. The derivation involves forming two possible trial 

solutions to the system; multiplying equations with certain terms and adding/subtracting 

them to form one reciprocity equation. Similarly second reciprocity equation is obtained 

by interchanging subscripts of the solution with enabling the two solutions have different 

frequencies. If the terms by which the equations are multiplied are real, the resulting 

equations are called real reciprocity relation, and if they’re complex (with their 

conjugates), resulting equations are called complex reciprocity relation: 

 

( )

*
* * * 1 2
2 1 1 2 2 1

1

* * *
2 2 2 1

1

*
* * * 1 2
2 1 1 2 2 1
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∂ ∂
+ + Φ + Φ

∂ ∂

ε

 (45) 

 

Assuming no sources are present; the effect of piezoelectricity is negligible (as in 

previous section); no electrical perturbations; and both solutions 1 and 2 vary with ejωt the 

equation (45) reduces to:  

 

{ }* *
2 1 1 2. . . 0v T v T∇ − − =  (46) 
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A sample perturbation formula derivation is presented below, as described in 

reference [9]. Consider a single layer system with a mechanical surface perturbation only 

on top surface (y=0) as presented in Figure 19.  

  

Figure 19. Single layer perturbation model 
 

Assume the acoustic field is independent of x, which results in divergence in 

equation (46) only contain y and z derivatives. The integration of equation (46) along the 

y axis; from 0 to b, would result in energy per unit x, considering a field independent of x: 

 

{ } { }* * * *
2 1 1 2 2 1 1 2 0

0

. . .   . .  ˆ. ˆ |
b

bv T v T z dy v T v T y
z

∂
− − = − −

∂∫  (47) 

 

Assume the solutions 1 and 2 correspond to perturbed and unperturbed solutions 

respectively, where βn is real (lossless) and βn’ is complex as: 

 

( ) ( )
' '

1 2  ,  n nj z j z

n nv e v y v e v yβ β− −= =  (48) 

 

Substituting the perturbed and unperturbed solutions in to equation (47) and 

reorganizing the terms, with a first order approximation of βn as βn’= βn+∆βn; 

x 

z 

y 

h 
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n
b

n n n n

j v T v T y
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z

β
− − −

∆ =
∂

− −
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 (49) 

 

In able to derive the formula assume that, the perturbations are small, the two 

terms in the denominator can be replaced with unperturbed values and with stress free 

boundary condition dictates the second T term in the numerator is zero, the perturbation 

formula for this system with perturbation only at top surface can be obtained as : 

 

{ }
{ }

* '
0

*

0

( . . )
  .

ˆ

ˆ2 . .  

n n y

n
b

n n

j v T y

v T z dy
z

β
=−

∆ =
∂

−
∂∫

 (50) 

 

The expression with the integral in the denominator usually treated as a measure 

that defines average unperturbed power flow per unit length; and is a constant three 

dimensional vector for each material. The values of this vector for several materials are 

given in reference [9]. The equation (50) can, for example, be used to treat mechanical 

surface perturbation of Rayleigh wave problem, as given in example 1 of Chapter 12 of 

reference [9]. Several perturbation relations was derived, solved, compared with exact 

solutions, and presented in the reference. The results presented show that perturbation 

theory is very useful in prediction of change in phase velocity, showing similar trends to 

exact solution. The agreement between exact and perturbation solutions usually increase 

with higher order approximations.  

The perturbation relations for phase velocity changes will be formed step by step 

in the next section without energy integration and one-dimensional propagation 
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assumption. Starting from the simplest case, perturbations caused by the guiding layer g 

on the bare substrate, to perturbation by mass layer under liquid loading will be 

developed. Linear perturbation equations are formed with the assumptions made with 

first order approximations, except for the first case. The first case of perturbation by 

guiding layer on substrate is only presented to show the derivation of the equations. The 

exact solution to model formed is already calculated numerically in previous chapter. 

 

4.2. Perturbation by Guiding Layer 

 

The simplest case is the system with the substrate and guiding layer only, with no 

mass layer. The dispersion equation for this case was obtained previously as: 

 

( ) ( )tan tanhg g sg s sT d T dξ=  (39) 

 

The solution of equation (39) is the exact solution to the system. In order to obtain 

the perturbation relations, consider a perturbed state, in which the phase velocity is v0, 

which is different from vs, Assuming the guiding layer g is viscoelastic (µg →Gg), the 

perturbation relation for changes in phase velocity (∆v) can be obtained by first order 

expansions of wave vectors: Ts
0 → Ts

0+∆Ts, Tg
0 → Tg

0+∆Tg and ξsg
0→ξsg

0 +∆ξsg with 

expansions of terms: 
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( ) ( ) ( )
( ) ( )

0
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g g

g g g g

T d T d
T d

T d T d
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 (52) 

 

To develop an expression in change in phase velocity ∆v, with v=v0+∆v; 

combining equations (39), (51) and (52): 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0

0

0 0

(tan tan ∆ (tanh tanh ∆
( ∆ )

1 tan tan ∆ 1 (tanh tanh ∆

g g g g s s s s

sg sg

g g g g s s s s

T d T d T d T d

T d T d T d T d
ξ ξ

   + +
   = +
   − −   

 (53) 

 

As discussed in reference [79], the solution is possible when 0 sgξ  = 0, which 

implies 0 0sT =  and ∆ 0gT = , because of the assumption that no perturbation present on 

guiding layer for very small changes. Hence, equation (53) simplifies to:  

 

( ) ( )0tan ∆ tanh ∆g g sg s sT d T dξ≈  (54) 

 

Substituting and rearranging terms, the change in phase velocity ∆v can be 

calculated from the relation: 
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 (55) 

 

This expression can further be simplified under some assumptions. Firstly, in the 

case of infinitely thick substrate, in which 
sd ω →∞, and negative real part of ∆v, "tanh ( 

)" term on the left side of the equation approaches to unity. Similarly, if we consider 

elastic solid and Newtonian fluid limits of Gg (ωτ →∞ and 0 respectively), further 

simplifications can be made.  

 

4.3. Perturbation by Mass Layer  

 

Perturbation relations for the three layer system can be derived in a similar 

fashion. The perturbation equations are aimed to investigate change in phase velocity as a 

function of perturbing mass layer thickness. Before expanding the terms related with the 

perturbing mass layer, reorganizing equation (21), in a form to have mass layer terms on 

the left side: 

 

( )
( ) ( )
( ) ( )

tanh tan   
 tan

1 tan tanh

sg s s g g

mg m m

sg g g s s

T d T d
T d

T d T d

ξ
ξ

ξ

−
=

+
 (56) 

 

Assuming viscoelastic guiding and mass layers, we can expand 
mgξ  and 

( ) tan m mT d  similarly around v0, and the perturbation relation for three layer case as given 

in [79]: 
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 (57) 

 

where the coefficient factor g is: 
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(58) 

 

Note that, in equations (57) and (58); phase velocity of the substrate is real and of 

guiding and mass layers are complex. As seen from equation (58), the coefficient factor g 

has numerous terms, even for the three layer system. It is quite obvious that it will not be 

easy to come up with a similar analytical expression, if an additional layer is added. 

However, the perturbation relation (57) can be used to evaluate g approximately with the 

method presented in reference [82]. Assume that the guiding layer and the mass 

perturbing layer are of same material. Furthermore, let the perturbing mass layer be 

acoustically thin ( 0),mdω →  which results in ( )0 0tan / 1m m m mT d T d → . If we assume an 

infinitesimal phase velocity change ∆v dv→  happens with an infinitesimal increase in 

mass layer thickness, and 
md dx→ , equation (57) can be rewritten as 
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If we consider a very small perturbation from the initial unperturbed state, we can 

take the limit of the expression in equation (59) to obtain a value for g at any point with 

reorganizing terms: 
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(60) 

 

where d(lnv)/dx is the slope of the natural logarithm of the dispersion curve. Substituting 

equation (60) back in equation (57), we can obtain assuming acoustically thin perturbing 

layer: 
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 (61) 

 

The equation can further be modified to replace x with a dimensionless parameter 

z, which is defined as; z=dgf/vg
∞ where, the superscript ∞ represents the solid limit of 

velocity. Substituting this dimensionless parameter into the equation (61), we can obtain:  
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The perturbation relation, equation (62) shows that, the complex coefficient 

equation g can be obtained from the dispersion curve; resulting in a simple expression. 

Having obtained the dispersion curve from equation (39) numerically, the slope of the 

natural logarithm of the dispersion curve for each operating point can be calculated 

numerically using a center-difference method. The sensitivity to mass loading at any z, 

can then be formed as suggested in [79] as: 

 

3

0
0

1 ∆
lim Re
m

m

vac

vacuum

m
d

x dm m

dv v
S

d dx vρ→
=

  =   
   

 

0

2

2
0

2

2
0

1
 

Re   

1

m
vac

z z g gg

v

vd lnv f

dz vv

v

ρ ∞
=

  
 − 
    =      −     

 

(63) 

 

The superscript “vac” is used for this case, in order to avoid confusion with fluid 

loaded case. The perturbation equations developed are used to investigate mass loaded 

sensor and biosensor performance, similar to parametric study presented in previous 

section. The sensitivity defined in equation (63), which depends on the dispersion curve, 

guiding and perturbing mass layer properties is used. Note that the sensitivity definition 

was made by dividing the velocity change by the density and thickness of the mass 



www.manaraa.com

76 

 

guiding layer. Thus, the sensitivity is calculated per surface density (1/ kg/m2), which 

makes the results independent of thickness or density of the mass perturbing layer. Only 

its mass or surface density is considered. It should again be noted that, the sensitivities 

that will be shown in the next figures are only valid for small perturbations. The 

sensitivity value corresponding to a thickness is only valid around that thickness, with 

acoustically thin mass perturbing layers. The figures are all drawn with non-dimensional 

thickness z, which was defined as z = f.dg/vg
∞. The sensitivity values on the y axes of the 

figures do represent physical significant quantities. The defined sensitivity equation is 

based on the ratio ∆v/v, which is also equal to ∆f/f. More physically significant values can 

be obtained for sensitivity if the sensitivity values are divided by some reference velocity 

or frequency. However, for easy comparison the values are left without further 

manipulation of the results of equation (63). 

• Mass loading sensitivity with ST-quartz substrate with chromium guiding layer: 

In Figure 20, the sensitivity of ST-quartz substrate with chromium guiding layer is shown 

for four different perturbing mass layers, as a function of non-dimensional thickness of 

chromium. The sensitivity of this configuration to Parylene-C, gold, SiO2 and chromium 

is illustrated. The dispersion curve shown in Figure 13 and material properties (shear 

velocity) of the guiding layers, given in Table 2 are used. The highest sensitivity among 

the mass perturbations is observed for Parylene-C and gold. This high sensitivity is 

caused by the sharp phase velocity transitions observed from the dispersion curve. As 

depicted previously, less the shear velocity difference between substrate and guiding 

layer, less sharp is the transition; resulting in less sensitivity.  



www.manaraa.com

77 

 

 

Figure 20. Sensitivity with substrate: quartz; guiding layer: chrome; f=100 MHz; ωτ=106  
with perturbing mass layers: Parylene-C, gold, SiO2 and chromium. 
 

• Mass loading sensitivity with LiTaO3 substrate with chromium guiding layer: 

Similarly Figure 21 illustrates the sensitivity with chromium guiding layer is shown for 

four different perturbing mass layers, but with LiTaO3 substrate. The dispersion curve of 

chromium from Figure 14 is used to calculate the sensitivities. Compared with ST-quartz, 

there are no sharp peaks. The sensitivity is also lower than ST-quartz; however the range 

of peak sensitivity is wider than ST-Quartz. Similarly, the highest sensitivity among the 

mass perturbations is observed for Parylene-C and gold. Lower sensitivity values; again, 

is related with the dispersion curve of LiTaO3 and chromium case. The lower shear 

velocity difference between substrate and guiding layer results in lower sensitivity. 
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Figure 21. Sensitivity with substrate: LiTaO3; guiding layer: chrome; f=100 MHz; 
ωτ=106  with perturbing mass layers: Parylene-C, gold, SiO2, and chromium. 
 

• Mass loading sensitivity with ST-quartz substrate with gold guiding layer: The 

next figure show the effect of changing guiding layer on the sensitivity for same 

perturbing mass layers used in Figure 20. The results in Figure 22 show higher 

sensitivities for all four guiding layers. Especially for SiO2 and chromium, the sensitivity 

values are very high, with their shear velocities higher than of gold. There are also local 

peaks for very small z values observed for these two perturbing layers, caused by the 

curvature change of dispersion curve, given in Figure 13. However, the high sensitivity 

related with these two layers might not be physically sound. Love wave theory and the 

model presented are based on the assumption that the shear velocity of topping layer 
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should be less than the bottom layer. The sensitivity for gold and Parylene-C is also 

almost three times higher than the chromium guiding layer case. Similar to chromium 

case, the peaks are pronounced. 

 

Figure 22. Sensitivity with substrate: quartz; guiding layer: gold; f=100 MHz; ωτ =106  
with perturbing mass layers: Parylene-C, gold, SiO2 and chromium. 
 

• Mass loading sensitivity with LiTaO3substrate with gold guiding layer: In Figure 

23, the same configuration with LiTaO3 substrate and guiding layer is shown. The 

sensitivity results are very similar to ones given in Figure 22 with higher sensitivities for 

all four guiding layers. Especially for SiO2 and chromium, the sensitivity values are very 

high, with no significant physical soundness. The local peaks for very small z values 

which are observed in quartz substrate have almost diminished for these two perturbing 
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layers. For LiTaO3, the sensitivity for gold and Parylene-C is also almost ten times higher 

than the chromium guiding layer case (with compared to three times in quartz). Similar to 

chromium case, the peaks are pronounced. 

 

Figure 23. Sensitivity with substrate: LiTaO3; guiding layer: gold; f=100 MHz; ωτ =106  
with perturbing mass layers: Parylene-C, gold, SiO2 and chromium. 
 

• Mass loading sensitivity with ST-quartz substrate with Parylene-C guiding layer: 

Figure 24 illustrates the same configuration, this time with Parylene-C. The trends are 

similar to gold guiding layer, however, the sensitivities are further enhanced; almost 25 

folds for SiO2 and chromium, and 40 folds for gold and Parylene-C; compared with gold 

guiding layer. The shape of the curve is similar to gold perturbing layer for chrome and 

SiO2, however the peaks for gold and Parylene-C are more pronounced. The sharper 
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peaks are a result of change of the curvature (change of sign of second derivative) of the 

Parylene-C dispersion curve in Figure 13. The dispersion curve of the gold on top of 

quartz has a transition region with almost constant slope resulting in wider sensitivity 

region. The change of curvature in Parylene-C or (SU-8) results in the sharper peak. 

Sharper peaks are usually not desirable for general sensing application, because 

realization of experimental optimization, for small changes, is not easy. Even the surface 

uniformity or roughness can affect the optimal performance. The local peaks at low z 

values are also less pronounced in Parylene-C guiding layer, compared with gold. 

 

 

Figure 24. Sensitivity with substrate: quartz; guiding layer: Parylene-C; f=100 MHz; 
ωτ=106  with perturbing mass layers: Parylene-C, gold, SiO2 and chromium. 
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• Mass loading sensitivity with LiTaO3 substrate with Parylene-C guiding layer: 

Figure 25 shows the sensitivity to same layers with Parylene-C guiding layer on LiTaO3 

substrate. The trends are very similar to quartz with Parylene-C, both shape- and value-

wise. The sensitivities are further enhanced almost 25 folds for SiO2 and chromium 

similar to quartz but for gold and Parylene-C the increase is higher: 50 folds. It can be 

concluded that for Parylene-C guiding layer, the substrate selection does not make 

significant difference in sensitivity, with sharp peaks for sensing gold and Parylene-C.  

 

 

Figure 25. Sensitivity with substrate: LiTaO3 guiding layer: Parylene-C; f=100 MHz; 
ωτ=106 with perturbing mass layers: Parylene-C, gold, SiO2 and chromium. 
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• Mass loading sensitivity with quartz substrate with viscoelastic Parylene-C 

guiding layer: Figure 26 shows the sensitivity with Parylene-C guiding layer (with 

viscoelastic behavior) and antibody layer on quartz substrate. Similar to the parametric 

study done before, the limiting relaxation times of 10 and 106 used for Parylene C. For 

protein film, the values listed in reference [78] was used. Note that for each relaxation 

time of Parylene-C; the two dispersion curves given in Figure 11 is used. A small 

increase in sensitivity is observed, when the guiding layer is more fluid-like (smaller 

relaxation time), however the values are close and have almost the same shape. The 

protein film, which is assumed to have almost viscous behavior (using the values for real 

and imaginary modulus in the reference), show sensitivity in between those two. The 

high sensitivity values obtained for biosensing are obtained under several assumptions, 

which may make this sensitivity hard to achieve. First of all, antibody films have the 

highest level of non-homogeneity. The isotropic film assumption makes this high 

sensitivity values hard to achieve for actual protein films. The sensitivity to same 

perturbations on LiTaO3 substrate is not presented, because they show very similar 

results with very little increase in sensitivity. 

The sensitivity study showed that the highest possible sensitivity can be obtained 

using polymer guiding layers. The highest sensitivity values are observed in Figure 26 

with Parylene-C guiding layer on top of ST-cut quartz substrates. Furthermore, it was 

observed that the sensitivity to protein layers in this configuration is very similar to 

sensitivity to viscoelastic Parylene layers. However, as mentioned, the optimization for 

the narrow range might be problematic, especially when there is no precise control of 

polymer thickness. On the other hand, if sensitivity in a wide range is desired, solid films 
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with higher shear velocities are favorable, with less sensitivity. Fabrication capability and 

film properties such as intrinsic stress should also be considered, if the desired film 

thicknesses are high. For low frequency applications, the high thickness requirement for 

solid films might even be impossible. 

 

 

Figure 26. Sensitivity with substrate: quartz guiding layer: Parylene-C; f=100 MHz; 
ωτ=10 and 106 with perturbing mass layers: Parylene-C, and protein layer. 

 

The final sensitivity perturbation investigations were performed on the 

experimental parameter modifications presented in section 3.5. The effect was 

investigated using four cases: actual density and shear velocity; double density and actual 

velocity; actual density and double velocity; and double density and double velocity.  

ωτ 
 ωτ 
 ωτ 
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The configuration selected was Parylene-C guiding layer on top of ST-quartz 

substrate and perturbation sensitivity to Parylene-C for the elastic case. The dispersion 

curves for these four cases are presented in Figure 27 and related sensitivities are 

presented in Figure 28. As expected from previous investigations, increase in density and 

shear velocity both results in decrease in sensitivity. The effect of doubling the velocity is 

more significant as observed for the cases of perturbations to silicon dioxide and 

chromium, which both have higher shear velocities. The modifications reduce the 

sensitivity; however the sensitivity is still higher than previous cases. 

 

Figure 27. Disperison curves with modified density and shear velocity, after experimental 
verification. 
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Figure 28. Sensitivity curves with modified density and shear velocity, after experimental 
verification. 
 

4.4. Perturbation by Fluid Loaded Mass Layer 

 

As discussed previously, biosensing applications usually involve sensing target 

analytes from aqueous solutions or samples. In an ideal SH SAW sensor, wave 

propagation should not be affected by liquid loading, however properties of the liquid 

like viscosity and conductivity topping the sensor, affects its performance. The effects of 

the liquid on top of the guiding and mass layer with perturbing mass layer under liquid 

loading can be investigated similarly. The perturbation relation is formed using the 

dispersion relation (42), again with order expansions. Additionally, tan(Tfdf) term can be 
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expanded similar to equation (51) and ξij terms can be expanded as ξij →ξij
0 +∆ξij. The 

algebraic solution procedure and expressions is lengthy and not presented. The resulting 

perturbation relation for the 4 layer case is given in reference [79] in the form of equation 

(57) and (58) as 
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where gL is the function that can be related to dispersion curve of the liquid loaded case, 

to similar to g in equation (60) related to dispersion of three layer case. In order to obtain 

an expression for gL, assuming small changes: ∆v dv→ , and 
md d→ ; and guiding layer 

is same material as mass layer: 

 

( ) ( )( )
1

02
2 2 0

0 2 0
0

tan
1 1 tan

m mg

L fg f f g g

m m

T dvdv
g v T d d

dx v T d
ξ ρ

−
   
  = − +       

 (65) 

 

Following the procedure from equation (57) to (60), the perturbation relation for 

the four layer system, gL becomes:  
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Converting x to non-dimensional parameter z, taking the limit approaching 0 

similarly and resubstituing gL into equation; the perturbation relation for liquid loaded 

case is: 
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Note that the dlnv/dz term in this equation, corresponds to the slope of the fluid 

loaded dispersion curve f, obtained from equation (42). In order to obtain the slopes for 

cases, the dispersion curve should be evaluated numerically. Similar to previous case, the 

sensitivity at fluid loaded system, which includes the slope of fluid loaded dispersion 

curve, can be defined and calculated as:  
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(68) 

  

The solutions of the fluid loaded case were almost identical to dry sensing for the 

materials chosen with water-like fluids for sensing. Thus the results of the dry sensing 

can be assumed as valid for fluid loaded sensing as well.  
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CHAPTER 5. CASE STUDY: BCL-2 SAW IMMUNOSENSOR 

 

Note to Reader 

 

The manuscript and the results presented in this chapter have been previously 

published [5, 8]; available for open access and are utilized with permission of the 

publisher. 

 

5.1. Introduction 

 

Ovarian cancer is the fifth leading cause of cancer death among women in United 

States and it has a 1.4% (1 in 71) lifetime risk [93]. Diagnosis of ovarian cancer in the 

early stages currently accounts for only 30% of all cases, and the cancer is lethal in most 

late stages. The lack of overt symptoms and the absence of a reliable screening test 

results in over 70% diagnoses occurring the disease has spread beyond the ovary, so the 

prognosis is poor [93]. Ovarian cancer patients have a short median survival time after 

diagnosis and their 5-year survival rate is less than 40%. Currently, pelvic examination, 

ultrasound and blood levels of serum biomarker CA125 are the standard screening 

methods for ovarian cancer [94-96]. However, each of these methods has limitations for 

ovarian cancer detection. Pelvic examination is known to be obstructed by the 

intraperitoneal location of the ovaries and is typically capable of late-stage disease 
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detection only. Similarly, ultrasonic examination does not possess the capability of 

distinguishing between benign and malignant cases and is subject to variation in 

interpretations among sonographers. CA125 is the current standard biomarker for ovarian 

cancer diagnosis and monitoring [96]. It is present in the blood serum of ovarian cancer 

patients. However, it has been shown that CA125 levels can also be elevated due to other 

disorders, including inflammation, benign gynecological disease, or hepatic disease, 

leading to false positive results [97, 98]. There are other biomarkers that have been 

associated with ovarian cancer such as eosinophil-derived neurotoxin [99], mesaothlin 

[100], VEGF [101], and HE4 [102]. There also exists a few biochips relying on 

fluorescence or chemiluminescence for ovarian cancer monitoring based on DNA 

sequences (testing for ovarian cancer-related mutations) [103, 104] and protein 

biomarkers [105, 106]. However, these biosensors uses complex reagents such as DNA 

extraction kits and expensive laboratory equipment including fluorescence microscopes 

or plate readers, thus, are not suitable for point-of-care testing [107]. Recently, an 

enzyme-linked immunosorbent assay (ELISA) test based on a cell-phone-coupled optical 

sensor has been presented for point-of-care quantification of urinary HE4 levels [107]. 

However, the chemicals and substances used during ELISA tests are still fairly 

expensive, and special attention should be given for storage. The absence of reliable 

screening methods to detect early ovarian cancer contributes to poor prognosis. 

Therefore, the development of a new, reliable, simple, safe, and economic testing 

platform to detect ovarian cancer is imperative. 

Bcl-2 (B-cell lymphoma 2) is a protein that is directly related with apoptosis of 

healthy and cancer cells [108]. Apoptosis is the most common form of programmed cell 
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death (cellular autophagocytosis, anoikis and necrosis are other forms). It has several 

other crucial functions, such as formation of the embryo, tissue maintenance, cellular 

homeostasis, terminating immune responses, and restricting the spreading of infections 

[109]. The Bcl-2 family, named after the Bcl-2 protein itself, includes both anti-apoptic 

and pro-apoptic constituents that control the release of catalysts of cell death. It was 

previously shown that urinary Bcl-2 levels are elevated during different stages of ovarian 

cancer [110, 111]. Clinical validation of urinary Bcl-2 as a reliable biomarker for ovarian 

cancer was conducted with ELISA tests using urine samples collected from 388 patients, 

including healthy controls and patients with benign gynecological disorders, early- and 

late-stage ovarian cancer [110]. The average urinary level of Bcl-2 was found to be 

0.59ng/ml in healthy controls, 1.12ng/ml in benign disorders, 2.60ng/ml in early-stage 

ovarian cancer and 3.58ng/ml in late-stage ovarian cancer. The highest Bcl-2 

concentration observed in the study was around 10ng/ml. The number of samples, 

average concentration, and standard deviation of Bcl-2 for these four patient groups are 

listed in Table 4. Signs of poor diagnosis of early-stage ovarian cancer can also be 

observed from the table, considering the small number of early-stage ovarian cancer 

patients (13) compared to other groups (137+). Thus, analyzing the values in Table 4, the 

minimum detectable target concentration of Bcl-2 was chosen to be 0.5ng/ml for design 

and for experimental characterization studies reported herein.  

The efficacy of Bcl-2 as a biomarker for ovarian cancer was further validated by 

comparison to CA125 serum levels using ELISA tests on samples from with results 

obtained from 12 healthy controls and 23 cancer patients. [110]. Elevated urinary Bcl-2 

(>1.8ng/ml) identified 17/17 or 100% of patients with serous adenocarcinoma (versus 
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13/17 or 76% with CA125), 4/4 or 100% of patients with mucinous ovarian cancer 

(versus 3/4 or 75% with CA125), and 1/2 or 50% of patients with primary peritoneal 

cancer as ovarian cancer positive (versus 1/2 or 50% with CA125).  

 

Table 4. Elevated urinary Bcl-2 in cohorts for healthy controls, benign diseases,  
and early- and late-stage ovarian cancer (N:388) [110]. 
 

 
Number of 
Samples 

Mean 
(ng/ml) 

Std. Dev. 
(ng/ml) 

Normal 77 0.59 0.61 
Benign 161 1.12 0.79 
Early-Stage Ovarian Cancer 13 2.60 2.23 
Late-Stage Ovarian Cancer 137 3.58 1.55 

 
 

Furthermore, none of the healthy controls had urinary Bcl-2 levels higher than 

1.8ng/ml and were identified as cancer negative (versus 2/12 or 16% incorrect 

identification with CA125). It was noted that Bcl-2 did considerably better in identifying 

false positives as compared to CA125 screening, and it was concluded that urinary Bcl-2 

over-expression can be effectively employed for ovarian cancer monitoring [110]. The 

comparison of Bcl-2 and CA125 not only provides further validation of Bcl-2 as a urinary 

biomarker, but also it leads the way for more reliable dual screening for ovarian cancer 

diagnosis. 

The biosensor studied employs shear horizontal (SH) surface acoustic waves 

(SAWs) to identify mass loading changes caused by Bcl-2 binding specifically to 

antibodies on the sensor surface. It is composed of a pair of interdigital transducers 

(IDTs) microfabricated on ST-cut Quartz wafers in the direction 90° off x-axis and delay 

path specifically functionalized to capture Bcl-2 proteins while minimizing non-specific 
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adsorption (Figure 29). An experimentally-verified optimized surface functionalization 

scheme was employed for effective capture of Bcl-2 protein while maximizing sensitivity 

and selectivity. The developed surface functionalization technique also minimizes the 

non-specific binding to the sensor surface. The sensor’s electrical connections were made 

by low-conductivity silver-reinforced epoxy. The experimental characterizations of the 

sensor’s response to varying Bcl-2 concentrations were performed in a custom-designed 

oscillatory circuit. The oscillatory circuit was composed of two RF amplifiers connected 

in series, a frequency counter, an oscilloscope (to monitor the signal), and the sensor, 

which was used as the feedback element determining the oscillation frequency. The 

characterization was performed by using multiple sensors with up to 10 tests conducted 

on a sensor by cleaning the delay path with 1.5M NaCl solution in de-ionized (DI) water. 

The tests were done by placing 80µl droplets of Bcl-2 solutions (in Dulbecco’s 

phosphate-buffered saline—DPBS) with various concentrations on the delay path. 

Quantification of the Bcl-2 concentration was achieved by monitoring the frequency shift 

for each solution. The frequency shift was caused by the change in surface density of the 

delay path (mass loading). As surface density increased by protein adhesion, SAW 

velocity decreased, resulting in a reduction in the oscillation frequency that was measured 

by the frequency counter. The frequency shift for each tested concentration was 

measured, and the sensor was successful in detecting Bcl-2 concentrations as low as the 

target concentration, 0.5ng/ml. It was observed that the frequency shift had a linear trend 

corresponding to increasing Bcl-2 concentration. Additionally, minimal frequency shift 

was observed for the control DPBS solution with no Bcl-2 present. 
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Figure 29. Illustration of sensor. 
 

In the following section, important design parameters, fabrication of the sensor, 

and surface functionalization are discussed in detail. In section 5.3, the electrical 

characterization of the sensor and results are presented. The final section covers the 

discussions and conclusion along with the future work.  

 

5.2. Sensor Design and Fabrication 

 

5.2.1. Sensor Design 

 

The sensor uses shear horizontal surface acoustic waves, which are frequently 

used for liquid-loaded biosensing applications. In SH-SAWs, the particle displacement is 

in the plane of the surface (unlike normal-to-surface displacement of Rayleigh waves). 

SH-SAWs are not affected or damped by liquid loading, as compared to Rayleigh waves, 

in which the particle displacement is directly coupled with the liquid on top and highly 

damped by mass loading of the liquid itself. Thus, Rayleigh waves are virtually 

insensitive to mass loading changes in liquid sensing applications. On the other hand, 

almost all SH wave propagation on various substrates results in leaky waves (not pure 

waves like Rayleigh waves), which also leak into longitudinal and shear vertical wave 
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components when excited. For this reason, special cuts of typical wafer types of wafers 

are typically used for SH waves, in which the energy is highly concentrated on the SH 

mode. Typical wafer types used in SH-SAWs are ST cut Quartz, 41° and 36° Y-cut 

Lithium Niobate (LiNbO3), and 36° Y-cut Lithium Tantalate (LiTaO3). The sensing 

mechanism of SH-SAW sensors relies on the change of SAW speed either by change in 

mass loading (most biological and chemical sensors) or by changing physical parameters. 

In general, the majority of SAW sensors include surface treatments and extra layers to 

effectively and specifically sense the target analyte. Several SH-SAW sensors have been 

reported using 36° Y-cut LiTaO3 [112], ST-cut Quartz [37, 113], 36° Y-Cut Quartz [114], 

41° Y-cut LiNbO3 [115, 116], 64° Y-cut LiNbO3 [30, 117], potassium niobate (KNbO3) 

[118], and Langasite [76]. In the design stage, different alternative SH-SAW generating 

wafers (such as ST-cut Quartz, 36° Y-Cut LiNbO3, and LiTaO3) were tested with 

identical delay path designs and surface functionalization steps. It was observed that ST-

cut Quartz is the most stable and the easiest to operate among those tested. ST-cut Quartz 

is also favorable for narrower bandwidth operation, and it does not need additional layers 

or gratings to concentrate the energy in the surface. SH waves are present in the direction 

of 90° off the x-axis (parallel to primary flat) in ST-cut Quartz, so the features were 

designed to obtain wave propagation in this particular direction. 

The substrates used in this study were 3-inch, single-side-polished, 500µm-thick 

ST-cut Quartz wafers. The SH-SAWs were generated and sensed by a pair of interdigital 

transducers separated with a delay path on these wafers. The pitch (corresponding to the 

wavelength of the SAW) was chosen as 300µm, ensuring fabrication yield and tolerable 

wave attenuation through the delay path. Each finger of the IDT was 75µm wide 
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(corresponding to the one quarter of wavelength) for the most efficient SAW generation, 

as reported by others [10]. The design parameters of the sensor are illustrated in Table 5. 

 

Table 5. Sensor design parameters. 
 

Wavelength (λ) 300µm 
Finger width (λ/4) 75µm 
Finger length 6250µm 
Number of IDT finger pairs 20 
Total sensor size 28mm x 22mm 
Delay path length 12mm (40λ) 
Resonance frequency 16.8MHz 

 

5.2.2. Fabrication 

 

The IDTs were microfabricated using conventional MEMS fabrication techniques 

with a single-mask photolithography process. The fabrication steps are illustrated in 

Figure 30. The fabrication process started with cleaning the wafer in an acetone bath 

placed in an ultrasound cleaner for 10 minutes, followed by rinsing with methanol and DI 

water and dried by a stream of nitrogen (Figure 3 [a]). The metal film (Cr) was then 

sputtered by DC sputtering (CRC Sputter, Torr International, New Windsor, NY) for 5 

minutes at 200mA constant current to obtain a film thickness of 1000Å (Figure 3 [b]). 

After sputtering, the wafers were cleaned once again with acetone, methanol, and DI 

water and dried with nitrogen. A positive photoresist S1813 (Shipley, Marlborough, MA) 

was then spun on the wafer. Photoresist was spun initially for 10 seconds at 700 rpm to 

be spread around the wafer, and then for 40 seconds at 3000 rpm to reach the desired 

thickness (Figure 3 [c]). A photoresist thickness of 1.6µm was obtained using this recipe. 
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The wafers were then soft-baked at 90°C for 60 seconds before exposure. After soft bake, 

the wafers were exposed to UV light for 5 seconds with an average intensity of 25W/m2 

to transfer the features from the mask to the wafers (Figure 3 [d]). The exposed wafers 

were then developed in developer MF-319 (Shipley, Marlborough, MA, USA) for 70 

seconds to remove the exposed portions of the photoresist. The wafers were then hard-

baked for 5 minutes at 100°C. The features were formed by etching for 40 seconds 

(Figure 3 [e]). Then, the remaining photoresist was removed in an acetone bath (Figure 3 

[f]). After completing the fabrication process to realize the sensors, the wafers were 

coated with photoresist to protect the features during the dicing process. The dicing of the 

ST Quartz wafer was performed using resin-bonded diamond blades at a spindle speed of 

20K rpm and a feed rate of 1mm/s in the dicing saw. One of the fabricated ST-cut Quartz 

sensors used in this study is illustrated in Figure 31. 

 

 

Figure 30. Overview of sensor fabrication. (a) ultrasound cleaning; (b) chromium 
deposition; (c) photoresist spinning; (d) exposure; (e) wet etching of chrome; (f) 
photoresist stripping. 

UV 
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(e) 

(f) 



www.manaraa.com

98 

 

The electrical connections to the sensors were obtained with a low-conductivity 

silver-reinforced conductive epoxy (Duralco 120, Cotoronics Corp., Brooklyn, New 

York). This connection method was preferred over the wire bonding method because 

stronger connections are desired during tests and it is not possible to solder chromium. 

Unlike the wire bonding method, it was observed that the conducting silver epoxy 

successfully withstood the solvents used in the surface functionalization of the delay 

path.  

 
 

 

Figure 31. Fabricated ST-cut Quartz sensor 
 

5.2.3. Surface Functionalization  

 

The sensor will quantify Bcl-2 levels in aqueous solutions, so it is necessary to 

apply surface treatments to the delay path section of the sensor to specifically and 

selectively sense the target protein. Molecular self-assembly techniques involving 

bioconjugation were employed to develop an effective Bcl-2 capture method. 

Bioconjugation can be defined as molecular linking of two or more components to 

construct a compound—namely, molecular self-assembly of several reagents for a 

IDT                             IDT 

Delay Path 

5mm  

300µm  
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desired purpose [109, 119]. A scheme was developed to isolate the Bcl-2 protein from a 

solution via specific binding to a monoclonal capture antibody that is immobilized on the 

sensor surface. More specifically, self-assembled monolayers (SAMs) and blocking 

agents were used to optimize Bcl-2 capture on the sensor surface. The surface 

functionalization developed in this study is novel as it is the first of its kind to isolate and 

capture Bcl-2 protein using functionalization by surface assemblies. The method was 

optimized for most effective Bcl-2 capture, with trials of several different SAMs and 

recipes, which were presented in detail in [109]. The optimization was handled by 

modified sandwich ELISA tests. The surface functionalization recipe employed in this 

study is summarized in the following steps (Figure 32):  

• First, oxygen plasma cleaning of the surface was performed to remove organic 

residues and form hydroxyl groups on the surface. The sensors were oxygen plasma-

cleaned for 5 minutes. The beaker in which the silanization was performed also was 

plasma-cleaned for 5 minutes. The hydroxyl groups serve as a foundation for 

organofunctional silanization.  

• Silanization was done using the organosilane, octyldimethyl silane (ODMS, 

molecular formula CH3(CH2)7Si(CH3)2Cl, Sigma Aldrich, St. Louis, MO) using a 

solution of 474µl of stock ODMS in 20ml of acetone resulting in an ODMS 

concentration of 0.1 M. ODMS provides the linkage between organic and inorganic 

domains through hydrophobic interactions. The sensors were kept in the solution for 30 

minutes, while IDTs were protected by Kapton tape. If the IDTs were not protected, it 

was observed that the chromium was attacked by HCl formed during the silanization 
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process, and the sensor did not work properly. After the silanization step, the sensors 

were rinsed with acetone and ethanol and dried with nitrogen.  

• Protein A/G (Pierce Recombinant Protein A/G, Thermo Fisher Scientific, 

Rockford, IL) with a concentration of 1µg/ml in Dulbecco’s Buffer Phosphate Silane 

(DPBS, Life Technologies, Grand Island, NY) was employed for immobilizing 

antibodies. The sensors were again placed completely in the solution for 1 hour. Protein 

A/G was adsorbed directly on the ODMS to ensure proper orientation of the antibodies 

on the sensor surface by binding their constant fragment (Fc) domains. The sensors were 

rinsed with DPBS after this step. 

 

 
Figure 32. Illustration of surface functionalization. 

 

• Immunoglobin G (IgG) antibodies (polyclonal rabbit anti-human Bcl-2, Sigma 

Aldrich, St. Louis, MO) were used for Bcl-2 capture, which are Y-shaped with two 

antigen binding (Fab) regions and one Fc. The Fc regions were immobilized with the help 

of Protein A/G onto the surface, resulting in properly-oriented free Fab regions for the 

most effective Bcl-2 capture and therefore maximum sensor surface affinity. A working 

concentration of 5µg/ml of anti-Bcl-2 in DPBS was placed on the sensor surface as a 
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droplet covering only the delay path for 1 hour. The sensor surface was then rinsed with 

DPBS before the final step. 

• Pluronic F127 (Sigma Aldrich, St. Louis, MO) was adsorbed to obtain a non-

fouling surface for highly selective Bcl-2 capture, which is essential for a diagnostically 

applicable sensor. The Pluronic, a tri-block copolymer whose non-fouling nature is 

mediated by its two polyethylene glycol (PEG) chains, prevents other molecules from 

non-specifically attaching to the sensor surface. The sensor was submerged in 10µg/ml 

Pluronic F127 in DI water for one hour and then rinsed with DI water. 

 

5.3. Measurement Setup and Results  

 

5.3.1. Oscillatory Circuit Design and Experimental Setup 

 

The SH-SAW biosensor was employed in a custom-designed oscillatory circuit 

for quantifying the Bcl-2 concentrations. An oscillatory circuit configuration was selected 

due to its higher sensitivity as compared to other detection methods such as vector 

voltmeter or network analyzer. In the custom oscillator circuit, the sensor was used as the 

feedback element of the RF amplifier. In this configuration, the relative change in SAW 

velocity due to Bcl-2 adhesion to the delay path leads to an oscillation frequency shift. 

This change in oscillation frequency was detected with a digital frequency counter, which 

was reported to accurately identify of acoustic wave velocities [6]. The setup used for 

Bcl-2 characterization involves the biosensor, two variable gain RF amplifiers (Olympus 

5073PR and Olympus5072PR, Olympus NDT Inc., Waltham, MA), a digital frequency 
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counter (Agilent 53220A, Agilent Technologies Inc, Santa Clara, CA), an oscillator 

(Tektronix TDS2001C, Textronix Inc., Beaverton, OR) and the specifically-designed 

analog filter, as illustrated Figure 33. Two RF amplifiers were used to enable 

optimization of the loop gain [120].  

The fabrication was done on both ST-cut quartz (90°-off x-axis direction and on 

41° Y-cut lithium niobate. The frequency responses for both sensors can be found in 

Appendix-B. It can be observed from the figures that for ST-cut quartz the response is 

noisy, with only a few crossings with 0°. The 0° crossings are usually the operation 

points of the sensors, given the fact that enough amplifier gain is supplied to the system. 

For the 41° Y-cut lithium niobate sensor, the response is less noisy with several 0° 

crossings, which results in excitation of several modes, even with using a filter. For this 

reason ST-cut Quartz is chosen for further sensor development.  

As the SH-SAW biosensor was used as a resonator, the frequency response was 

investigated in order to identify proper circuit satisfying oscillation conditions. 

Experimentally-measured frequency response is depicted in Figure 34. An insertion loss 

of 61.5 dB was measured when there was liquid on the functionalized delay line. The 

frequency response shows several peaks around the designed oscillation frequency (16.8 

MHz). 

 

 

Figure 33. Block schematic for oscillator circuit 
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The designed feedback/loop based oscillator had a measured short-term frequency 

stability less than 3 ppm. The experiments show that this sensitivity enabled the detection 

of Bcl-2 concentration as low as 0.5ng/ml, which was sufficient for this study. The gain 

of the amplifiers were adjusted, and the passive filter was designed in such a way that the 

loop gain was 0 dB or higher and the phase shift in the loop was equal to 0°. The 

oscillation started after these two conditions were met and the exact resonance frequency 

was the frequency that makes the phase 0°, not the point of peak gain. We chose to use a 

physical circuit measurement technique rather than simulation techniques for filter design 

due to the complicated impedance spectrum of SAW devices and the requirement of 

accurately identifying the total phase in the oscillator loop [121]. The open loop gain and 

phase were measured by an experimental setup illustrated in Figure 8 (a). A network 

analyzer (Agilent 5061A, Agilent Technologies Inc., Santa Clara, CA) was used to 

measure open loop gain and phase satisfying the aforementioned oscillation conditions.  

The first oscillation condition required adjustment of the amplifier gain to obtain a 

total loop gain of at least 0 dB, compensating for all of the losses in the loop. The noise 

figure of the amplifiers was also important since it affected the frequency stability of the 

oscillator. The insertion loss of the sensor was -61.5 dB (Figure 34); hence, a feasible 

range of 61 to 65 dB was determined for the sensor. The passive filter also had an 

insertion loss of 2 dB; hence, a minimum total gain of 67 dB was supplied by RF 

amplifiers to meet the first oscillation condition. Additionally, it was observed that the 

sensor response after surface functionalization was even more noisy (with several local 

maxima and minima) compared with Figure B1. This was caused by the non-

homogenous nature of the protein films, which resulted in additional wave scattering. 
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The second oscillation 

satisfied using a passive filter. The designed band

undesirable peaks in the frequency response of the SAW sensor. A pi

filter was designed with 16.8 MHz center frequency and 30% fractional bandwidth. The 

phase at the center frequency was determined using the set up 

The phase of the filter was designed to obtain 0

filter circuit and its frequency characteristics can be seen in 

circuit parameters were determined 

tuned by the trial and error method
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requency response of sensor. Insertion loss (red, solid), phase (blue, dashed).

The second oscillation condition was to make the total loop phase 0

satisfied using a passive filter. The designed band-pass filter also helped to eliminate the 

undesirable peaks in the frequency response of the SAW sensor. A pi-type LC band pass 

h 16.8 MHz center frequency and 30% fractional bandwidth. The 

phase at the center frequency was determined using the set up illustrated 

the filter was designed to obtain 0
°
 total phase in the loop. The designed 

filter circuit and its frequency characteristics can be seen in Figure 35 

circuit parameters were determined with the developed MATLAB code then were fine

trial and error method [122] .  

 

nsertion loss (red, solid), phase (blue, dashed). 

condition was to make the total loop phase 0
°
 and was 

pass filter also helped to eliminate the 

type LC band pass 

h 16.8 MHz center frequency and 30% fractional bandwidth. The 

illustrated in Figure 35 (a). 

total phase in the loop. The designed 

 (b) and (c). The 

developed MATLAB code then were fine-
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(a) 

 

                        (b)           (c) 

 

Figure 35. Loop gain and loop phase measurements for filter design. (a) Block diagram of 
loop-gain and loop phase measurement setup; (b) designed pi type filter; (c) frequency 
characteristics of filter: insertion loss (red, solid), phase (blue, dashed). 

 

The magnitude and phase response of the loop was also measured after insertion 

of the filter block. The measured open loop phase lag and the loop gain in the required 

oscillation frequency were found to be 0° and 3.1 dB, respectively. The block diagram of 

the measurement setup and the results are illustrated in Figure 36(a) and (b), respectively. 

As a result, the oscillation conditions were satisfied with this custom designed circuit and 

oscillation started when the loop was closed in the setup illustrated previously in Figure 

33.  
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 (a) 

 

(b) 

 

Figure 36. Loop gain and loop phase measurements with filter. (a) block diagram of loop 
gain and loop phase measurement setup; (b) measured loop gain and loop phase plots: 
loop gain (red, solid), loop phase (blue, dashed). 
 

5.3.2. Results 

 

The tests were performed using the setup illustrated previously in Figure 5 with 

Bcl-2 solutions in DPBS ranging from 0.5 to 12ng/ml. Several ST Quartz sensors were 
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tested with droplets of Bcl-2 solutions for 10 minutes to ensure reproducibility and 

repeatability. Each fabricated and surface functionalized sensor was used in several tests 

by soaking them in 1.5M NaCl solution in DI water, rinsing with DI water, and drying 

them under a nitrogen stream between uses. Each sensor was able to be tested up to 10 

times by following this technique to remove Bcl-2 proteins attached to the antibodies. 

Placed manually on the delay path were 80µl droplets of Bcl-2 solutions to ensure that 

the shape and coverage of the droplets on the delay path were same in each test.  

 

 
 

Figure 37. Measured frequency shift (Hz) for various concentrations of Bcl-2 in DPBS. 
 

Bcl-2 solutions with concentrations of 0.5, 1, 2, 4, 6, 8, 10, and 12 ng/ml were 

tested along with a control (DPBS only). The results of these tests are presented in Figure 

37. As can be observed from the figure, there was a clear linear trend of increasing 

oscillation frequency shift with increasing Bcl-2 concentration. The control test showed 

almost no shift in oscillation frequency. It can also be observed from the shape of the 
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curves that the protein adhesion was nearly completed by the end of the second minute. 

The lowest concentration tested resulted in a frequency shift of >300Hz, which is a 

detectable value with an oscillation frequency of 16.8MHz. In Figure 38, the shift in 

oscillation frequency is presented as a function of Bcl-2 concentration. The frequency 

shift values were calculated by taking the average of data after 2.5 minutes. As seen from 

the figure, the shift in frequency increases linearly with increasing concentration. 

 

 

Figure 38. Average frequency shift measured, corresponding to different Bcl-2 
concentrations and best line fit (R2=0.959). 

 

Furthermore, another control was also tested with Bovine Serum Albumin (5 

mg/ml) in PBS to ensure specificity of the sensing system to Bcl-2. Importantly, when the 

device designed to detect only Bcl-2 was challenged with a solution of an alternate 
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protein control (BSA), only a minimal frequency change occurred compared to protein 

free controls. Finally, the sensor was challenged with a mixture of Bcl-2 (4 ng/ml) and 

BSA (5 mg/ml), chosen to simulate high urine levels of each protein. Even in the 

presence of 1000-fold more BSA than Bcl-2, a shift in the frequency similar to Bcl-2 

alone was observed, conclusively demonstrating the specificity of this functionalized 

surface in a biosensor application. The frequency shifts as a function of time obtained 

from these tests are presented in Figure 39 similarly to Figure 37, with some select data 

series taken from it for better visualization. The mean and uncertainty of the steady state 

(>2.5 min) frequency shift of Figure 39 is summarized in Table 6. Steady state frequency 

shifts of an acoustic biosensor for Bcl-2.. Not surprisingly, however, the more highly 

concentrated protein solutions introduced greater noise, possibly caused by physical 

interactions between the concentrated but unbound proteins and the multilayered surface 

which could be reduced by rinsing. Taken together, these results show the best 

performing surface of those tested has been identified and its specificity and sensitivity 

demonstrated; however, further optimization and device integration will be necessary 

before clinical use is feasible.  

 

5.4. Perturbation Considerations 

 

The experimental results of the case study are also analyzed via perturbation 

method and equations derived in the previous chapter. The equation for liquid loaded 

perturbation was given in equation (67).  
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Table 6. Steady state frequency shifts of an acoustic biosensor for Bcl-2. 
 

Mean (Hz) Std. Dev. (Hz) 

PBS 6 2 

Bcl-2 0.5 ng/ml 369 37 

Bcl-2 4 ng/ml 693 29 

Bcl-2 8 ng/ml 907 40 

Bcl-2 12 ng/ml 1392 27 

BSA 5ug/ml 108 80 

BSA 5ug/ml & Bcl-2 4ng/ml 538 142 
 

 

Figure 39. The frequency shifts corresponding to various concentrations of Bcl-2 in PBS, 
PBS only or BSA controls, and a mixture of Bcl-2 and BSA were measured with a 
acoustic biosensor. 
 

For the Bcl-2 immunosensor, no other guiding layers were utilized. However, 

SAMs of protein layers formed on the surface can be regarded as guiding layers with 

identical properties to protein layer, which is the perturbing mass layer in this case. 

Assuming identical properties for guiding perturbing layers (perturbing protein layer on 

top of another protein layer), the terms in perturbation equation reduces to: 

-1,600

-1,400

-1,200

-1,000

-800

-600

-400

-200

0

200

0 2 4 6 8 10

F
re

q
u

e
n

c
y
 S

h
if

t 
(H

z
)

Time (min)

PBS

Bcl-2 0.5 ng/ml

Bcl-2 4 ng/ml

Bcl-2  8 ng/ml

Bcl-2  12 ng/ml

BSA 5ug/ml

BSA 5ug/ml &
Bcl-2 4ng/ml



www.manaraa.com

111 

 

( )
( )

2 2 0

2 2 0

1 tan

1 tan
1fm f f

fg f f

T d

T d

ξ

ξ

+

+

 
= 

 
, 

2

2

0

2

2

0

1

1

1

m

g

v

v

v

v

−

−

 
 
  =
 
 
 

 and 1m

g

ρ

ρ
=  (69) 

 

Applying these, the perturbation equation reduces to, 

00
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 (70) 

 

The first term in the right side of the equality, is approximated from the 

perturbation analysis as the slope of natural logarithm of the dispersion curve. Before 

approaching the perturbation problem starting from the dispersion curve, the thickness 

range and region of the dispersion curve should be considered. Typical thicknesses for 

the protein layers are in the order of 1 to 10 nm [119]. A thickness of 10 nm, corresponds 

to a z of 0.0056, which is at the very far left of the dispersion curve with virtually no 

change in phase velocity region. The assumption of perturbation analysis also states that 

starting point for perturbation is not equal to unperturbed state, which does not hold very 

true for this case.  

The approach is investigated with back-substitution from the experimental results; 

with the slope of the best fit curve from Figure 38; -74 Hz/(ng/mL of Bcl-2). vg
∞ can be 

calculated using the real part of the complex shear modulus (≈1 MPa) and density (≈1000 

kg/m3) supplied in reference [78] for aqueous protein films as 31 m/s. 

Another approximation should be made to determine the perturbing mass 

thickness dm, since aqueous protein films is not isotropic and uniform. Defining an 
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effective thickness dm,eff  as the ratio of the volume of the film 
film∀ , by the area on which 

the sample droplets are placed
surfaceA  as:  

 

,m eff

film

surface

d
A

=
∀

 (71) 

The volume of the film also equals the total protein mass captured on the surface 

pm∆ , divided by the film density: 

 

,m eff

p

surface m

d
m

A ρ

∆
=  (72) 

 

The total protein mass in a sample equals to protein concentration (C) times the 

volume of the sample droplet. Substituting this into the equation: 

 

,

C
m eff

droplet

surface m

d
A ρ

∀
=  (73) 

 

Finally, substituting terms into the perturbation equation, with the slope term 

renamed as SL and with  f= f0: 
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Reorganizing terms, we can obtain the ratio of theoretical frequency change (∆f) 

and concentration ratio (C) as:  

 

2
0∆

C
g

droplet

surface m

ff

v
SL

A ρ∞

∀
=  (75) 

 

The slope SL, which is the experimental counterpart of the first term in the 

original perturbation equation can be calculated, using the experimentally calculated ∆f/C 

of 74 Hz/(ng/mL of Bcl-2). The slope SL is found as -2.5 10-4; using the values
droplet∀ =80 

µL, Asurface = 80.10-6 m2 (10mm x 8mm), vg
∞ =31 m/s and ρm = 1000 kg/m3 by equation 

(75). The slope of -2.5 10-4 is very small, but still large enough to be considered as non-

zero. 

As seen from the analysis, even though perturbation analysis is efficient in giving 

insight to the problems, the high order of approximations made during derivation, makes 

corrections based on experimental work essential. Considering the slope obtained 

experimentally, the dispersion curve should be experimentally verified first, if further 

perturbation prediction to be made. 

 

5.5. Discussion and Conclusions 

 

In this study, an ultrasonic MEMS biosensor for detection of urinary anti-

apoptotic protein Bcl-2 was successfully designed, fabricated, and experimentally 

characterized. SH-SAWs were employed with microfabricated IDTs on ST-cut Quartz to 
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quantify the Bcl-2 concentration. SH-SAWs were generated and sensed by a pair of 

micro-fabricated IDTs separated by a surface functionalized delay path. An optimized 

recipe using SAMs of ODMS, Protein A/G, monoclonal antibodies, and Pluronic F127 

was employed for the most effective Bcl-2 capture. The method was optimized 

specificity and selectivity, with trials of several different similar SAMs.  

The sensor was experimentally characterized in a resonator circuit by placing 

buffer solutions of Bcl-2 of known concentration (in DPBS) on the delay path. Bcl-2 

concentrations were characterized by the resulting resonance frequency shift caused by 

the mass loading increase of biomarker binding, which reduces the speed of the SH-

SAWs. The target sensitivity for diagnosis and quantifying the stage of ovarian cancer 

was achieved with successful detection of Bcl-2 in the concentration range of 0.5 to 

12ng/ml. It was also observed that there is a linear relationship between the shift in 

resonance frequency and Bcl-2 concentration. Each sensor was used up to 10 times after 

applying 1.5M NaCl solutions in DI water to remove the proteins attached to the 

antibodies. The sensor developed was successful in detecting and quantifying Bcl-2 in the 

target concentration range. Also control tests with BSA shows the selectivity of the 

sensor. 

The sensor can potentially be employed in a point-of-care test device for 

monitoring and diagnosis at the patient’s bedside. The electrical components of the 

sensing system—RF amplifiers, frequency counter, and analog filter can potentially be 

miniaturized, assembled, and packaged in a standalone device with the sensor itself. A 

new, low-cost, accurate, safe, simple, and reliable testing platform to diagnose ovarian 

cancer by urinary Bcl-2 levels would benefit all women not only in the U.S., but 
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worldwide, including medically underserved geographical areas and women at high risk 

for developing ovarian cancer. This is especially important for detection of early-stage 

ovarian cancer, which is associated with high survival (>95%) and reduced lifelong 

medical costs, but currently accounts for less than 10% of diagnosed ovarian cancer 

cases. In addition to our sensor’s ability to accurately detect initial ovarian cancer cases, 

ovarian cancer monitoring during the course of the disease may indicate recurrent disease 

and, possibly, therapeutic efficacy. In 2009, 21,550 women were diagnosed with ovarian 

cancer in the U.S. [93]; this biosensor could potentially detect thousands of previously-

undiagnosed cases. In summary, this technology could potentially accurately detect all 

ovarian cancers, many of which currently go undetected.  
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CHAPTER 6. CONCLUSION 

 

6.1. Summary and Contributions 

 

In this dissertation, guided surface acoustic wave sensors are theoretically and 

experimentally investigated in detail. Wave propagation and mass loading sensing with 

shear horizontal polarized surface acoustic waves are investigated and characterized 

using analytical modeling and perturbation analysis. The model verification was 

performed experimentally using surface acoustic wave devices. A surface acoustic wave 

immunosensor case study was done experimentally and results were investigated using 

the perturbation analysis. The immunosensor was designed, fabricated and tested for 

selective capture of protein Bcl-2, which is elevated in many cancer types including 

ovarian cancer. 

Guided surface acoustic waves or Love waves are obtained when a guiding layer 

is introduced on top of a shear horizontal surface acoustic wave propagating substrates. 

The layers deposited, spun or grown on top enable wave-guiding, by confining energy to 

surface, increasing sensor sensitivity and performance. Wave propagation problem was 

investigated in detail for gravimetric (or mass loading) guided wave sensors. The 

analytical model was developed for both dry and liquid loaded sensing using wave 

equation in for multilayer system enabling viscoelasticity. The closed form algebraic 

solutions were obtained by simultaneous solution of wave equations of each layer, with 
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continuity of stress and displacement boundary conditions. A numerical approach was 

developed and used to solve the complex and implicit algebraic equation to obtain 

dispersion relation. Detailed parametric investigation of dispersion curves was done using 

typical substrate materials and guiding layers. Substrate types of ST-cut quartz, 41° YX 

lithium Niobate and 36° YX lithium tantalate with guiding layers of silicon dioxide, 

metals (chromium and gold), and polymers (Parylene-C and SU-8) were analyzed. The 

effects of frequency and degree of viscoelasticity were also investigated. The results 

showed that dispersion curve for different frequencies show similar characteristics but in 

different guiding layer thickness ranges. The degree of viscoelasticity was demonstrated 

to have little effect on dispersion. It was also observed that, a transition region with a 

gradual decrease in phase velocity is obtained, when the shear velocity difference 

between substrate and guiding layer is relatively high. A smoother transition is observed, 

when shear velocities are close. Furthermore, the difference in density was also shown to 

have effect. Large density differences between substrate and guiding layer resulted in 

sharp with nearly constant slope transition in dispersion curve. Minimal density 

difference was observed to have a very smooth transition. The model was verified with 

experiments involving polymers (spun photoresists). It was shown that the model was 

able to represent the problem with modifications of guiding layer density and shear 

velocity. 

Perturbation methods are employed to obtain approximate solutions to complex 

problems. Perturbation equations were developed with first order approximations with 

relating the slope of the dispersion curves presented with sensitivity. The equations were 

used to investigate the sensitivity for material selection (substrate, guiding layer, and 
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mass perturbing layer) and degree of viscoelasticity. The investigations showed that the 

sensitivity is increased with using guiding layers with lower shear velocities and lower 

densities. Among the guiding layers investigated, Parylene C showed the highest 

sensitivity with having both lowest density and shear velocity. Gold and chrome was also 

investigated and similarly gold came out with better sensitivity compared with chrome. 

The perturbation investigations were also extended for viscoelasticity and for protein 

layers, which are involved in all of immunosensing applications. It was observed that, 

more viscoelastic behavior results in more sensitivity. The highest sensitivity values are 

observed with Parylene-C guiding layer on top of ST-cut quartz substrates. Furthermore, 

it was observed that the sensitivity to protein layers in this configuration is very similar to 

sensitivity to viscoelastic Parylene layers. However, it should be noted that the 

assumption of isotropic behavior for aqueous protein layer may not be very valid. 

Finally, an immunosensing case study was presented for selective capture of 

protein B-cell lymphoma 2 (Bcl-2), which was proven to be related with ovarian cancer. 

The immunosensor was designed, fabricated, and experimental characterization was 

done. The sensor was microfabricated in cleanroom environment using traditional MEMS 

fabrication techniques. A surface-functionalization scheme with monoclonal antibodies, 

ODMS, Protein A/G and Pluronic F127 was developed and applied to delay path. 

Detection of Bcl-2 with sub ng/ml sensitivity was successfully presented from buffer 

solutions. Bcl-2 concentrations were quantified by the resulting resonance frequency 

shift. The frequency shift was detected by a resonator circuit. The target sensitivity was 

achieved with demonstrated Bcl-2 detection capability as low as 0.5 ng/ml from a buffer 

solution. A linear frequency shift increase was observed with increasing Bcl-2 
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concentration. The selectivity was shown with experiments done with introducing 

another protein, in addition to Bcl-2, to the buffer. It was seen that similar detection 

capability of Bcl-2 is obtained even with existence of control protein in very high 

concentration. The results were investigated with perturbation analysis and equations. 

 

6.2. Future Work 

 

Recommended future work, based on the investigations and results acquired are as 

follows: 

• The analytical model should be modified for more accurate dispersion 

predictions. Although, modification of guiding layer density seems to be effective, 

methods or modifications to derivation should be introduced to include this effect. 

• The validity of the approximation of perturbation equations with dispersion curve 

slope should be both theoretically and experimentally verified. The level of agreement for 

different materials and frequencies should be evaluated.  

• Inherent selectivity problem of the surface acoustic wave sensors should be 

addressed in the long term. The low cost and feasible operation of surface acoustic wave 

sensor is promising and could possibly contribute significantly to global healthcare. 
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Appendix A. Matlab Codes  

% Property Definitions 

clear all 

clc 

  

%Solution 

f=100E6; %frequency 

wt=1E6; %relaxation time 

  

%Substrate 

vs=4990; %shear veloctiy 

rhos=2650; %density 

t=500E-6; %thickness 

nus=vs^2*rhos; %shear modulus 

  

%guiding layer 

vlinf=30; %shear velocity 

rhol=1000; %density 

  

%top fluid layer 

rhof=1000; %density 

viscosity=1.2E-3; %dynamic viscosity 

nuf=0.16; %shear modulus 
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Appendix A (Continued) 

Gf=1i*2*pi*f/(1+1i*2*pi*f*nuf/viscosity); %Complex Shear modulus 

vf=(Gf/rhof)^0.5; 

b=2E-6; %thickness 

 

%Initial value 

  

i=1; 

for z=0.002:0.002:0.010 

%Equations 

vl=vlinf*(wt*1i/(1+wt*1i))^0.5; 

Gl=1i*r% Property Definitions 

clear all 

clc 

  

%Solution 

f=100E6; %frequency 

wt=1E6; %relaxation time 

  

%Substrate 

vs=4990; %shear veloctiy 

rhos=2650; %density 

t=500E-6; %thickness 

nus=vs^2*rhos; %shear modulus 
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Appendix A (Continued) 

%guiding layer 

vlinf=30; %shear velocity 

rhol=1000; %density 

  

%top fluid layer 

rhof=1000; %density 

viscosity=1.2E-3; %dynamic viscosity 

nuf=0.16; %shear modulus 

Gf=1i*2*pi*f/(1+1i*2*pi*f*nuf/viscosity); %Complex Shear modulus 

vf=(Gf/rhof)^0.5; 

b=2E-6; %thicknesshol*vlinf^2*wt/(1+1i*wt); 

d=z*vlinf/f; 

x(i)=2*pi*f*(1/vl^2-1/vs^2)^0.5*d; 

x_t_re(i)=real(x(i)); 

x_t_im(i)=imag(x(i)); 

i=i+1; 

end 

 

%function [x,ssq,cnt] = rootfindx(nus,Gl, beta,t,d,w0,Options) 

Function for complex root search 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 
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Appendix A (Continued) 

 

[x,ssq,cnt] = cxroot(@funw,w0,Options); 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% The nested function funw uses parameters k and c1 from the parent function 

% , where are as input arguments. 

% Usef supplied nested function funw defines formulae for calculating value 

% of the complex function of complex argument (w) and other parameters  

% (k,c1)  

     function fw = funw(x) 

    fw = tan(x)+nus/Gl*(beta/x)*sqrt(x^2/beta^2-1)*tan(beta*t/d*sqrt(x^2/beta^2-1)); 

     end % fw 

 end  

%SENSITIVITY 

%v=complex(v1(:,1),v1(:,2)); 

LOG=log(v); 

 %Derivative 

 kz=1; %z limit 

step=0.005; %step 

wt=10; %Viscoelasticity 

f=100E6; %Frequency 

 %Guiding layer 

rhog=rhol; 
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Appendix A (Continued) 

vginf=vlinf; 

 %Mass layer 

vminf=vlinf; 

 for k=1:1:1 

vg=vginf*(wt*1i/(1+wt*1i))^0.5; 

vm=vminf(k)*(wt*1i/(1+wt*1i))^0.5; 

 for i=1:1:kz/step     

if i==1; 

    der(1)=(LOG(2)-LOG(1))/step; 

   else if i==kz/step; 

        der(i)=(LOG(kz/step-1)-LOG(kz/step))/step; 

 else 

der(i)=(LOG(i+1)-LOG(i-1))/0.001; 

     end 

 end 

 S_rho_m_vac(i)=1.3*abs(real( (1-vm^2/v(i)^2)/(1-vg^2/v(i)^2)*der(i)*f/vginf/rhog)); 

%Vacuum sensitivity 

 end 

S(:,k)=S_rho_m_vac; 

end 

z=step:step:1; 

plot(z,S,'linewidth',3);  
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Appendix B. Frequency Responses of the Bare Sensors 

 

Figure B1. Insertion loss of ST-cut quartz sensor without surface functionalization. 
 

 

Figure B2. Phase of ST-cut quartz sensor without surface functionalization. 
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Appendix B (continued) 

 

Figure B3. Insertion loss of lithium niobate sensor without surface functionalization. 
 

 

Figure B4. Phase of lithium niobate sensor without surface functionalization. 
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Appendix C. Copyright Clearance 

All referenced figures and manuscript and figures of Chapter 5 were published in 

open access journal “Sensors MDPI”. The authorization of reproduction of author’s own 

manuscript is granted by terms of use as stated in “3. Open Access License.” From the 

webpage: http://www.mdpi.com/about/termsofuse. The use of other figures referenced 

from “Sensors MDPI” (i.e. reference 6) was granted through the publisher and proof e-

mail can be found in the last page. 
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Appendix C (continued) 
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